

CONCEPTUALIZAÇÃO

TEORIA

Teoria Celular – movimentos transmembranares

PRINCÍPIOS

- A membrana plasmática é uma estrutura que separa o meio intracelular do meio extracelular:
- A membrana plasmática regula a entrada e saída de substâncias.
- Dois meios com concentrações de soluto diferentes, quando separadas por uma membrana porosa, tendem a igualar as concentrações químicas (equilíbrio químico)

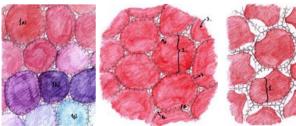
CONCEITOS

o Seres heterotróficos o Membrana plasmática o Meio intracelular o Meio extraceular	 Meio hipotónico Meio isotónico Meio hipertónico Célula túrgida (turgescência Célula)
	Célula)
o Difusão	o plasmolisada (plasmólise

PROBLEMA:

O que acontece às células vegetais quando colocadas em meios: isotónicos; hipotónicos e hipertónicos?

METODOLOGIA


CONCLUSÃO

As células vegetais quando colocadas num meio hipotónico (baixa concentração de soluto, ex:água destilada) tornam-se túrgidas, ou seja, o seu vacúolo aumenta de tamanho devido à entrada de água. Por sua vez, quando se colocam em meio hipertónico (elevada concentração de soluto, ex: água com NaCl) ficam **plasmolisadas** devido à saída de água vacuolar. O vacúolo diminui de tamanho devido à saída de água do seu interior para o meio extracelular. Num meio isotónico (meio com concentração de soluto igual à concentração de soluto da água vacuolar. ex:água da torneira) a água circula em ambos os sentidos não ocorrendo alterações no volume do vacúolo.

TRANSFORMAÇÃO DOS DADOS

	Meio hipotónico	Meio isotónico	Meio hipertónico
Células vegetais	A água entrou p/ o vacúolo e este aumentou de volume (a célula ficou túrgida).	O fluxo de água foi igual em ambos os sentidos, pois a concentração de soluto é igual nos 2 meios (extra e intracelular).	A água do vacúolo celular saiu para o meio extracelular. O vacúolo diminuiu de volume (célula ficou plasmolisada).

DADOS

Legenda: 1 – Vacúolo; 1 a) – Suco vacuolar c/pH ácido; 1 b) – Suco vacuolar c/pH neutro; 1 c) – Suco vacuolar c/ pH básico 2 – Tonoplasto; 3 – Suco vacuolar; 4 – Membrana plasmática (ou parede celular).

ACONTECIMENTO

Observação ao M.O.C. do movimento da água em células da epiderme de pétalas da sardinheira.