qwertyuiopasdfghjklçzxcvbnmqwert yuiopasdfghjklçzxcvbnmqwertyuiopasdfghj sdfghjklçzxcvbnmqwertyuiopasdfghj klçzxcvb vbnmqv Titulação Ácido-Base cvbnmq wertyui Actividade Laboratorial Química 11º ano qwerty

uiopasdi

Julho de 2010

Maria Alexandra Rocio Janeiro

ertyuiopasdfghjklçzxcvbnmqwertyuiopasdf opasdfghjklçzxcvbnmqwertyuiopasdfghjklçz ghjklçzxcvbnmqwertyuiopasdfghjklçz xcvbnmqwertyuiopasdfghjklçzxcvbn mqwertyuiopasdfghjklçzxcvbnmrtyui opasdfghjklçzxcvbnmqwertyuiopasdf ghiklczxcvbnmqwertyuiopasdfghiklcz

ACTIVIDADE LABORATORIAL - QUÍMICA 11º ANO

TITULAÇÃO ÁCIDO-BASE

O que se pretende

- 1- Seleccionar o material
- 2- Descrever o procedimento numa titulação pelo método tradicional (volumetria) e a partir do traçado da curva de titulação.
- 3- Realizar experimentalmente as titulações.
- 4- Calcular a concentração do titulado.

Titulante: solução de NaOH, 0.1 mol/dm³

Titulado: solução de HCl de concentração desconhecida

Verificar significados

Escrever breves descrições dos seguintes termos

Termo	Breve descrição
Titulação	
Titulante	
Titulado	
Indicador ácido-base	
Ponto de	
equivalência	
Ponto final	
Curva de titulação	
Erro da titulação	

Procedimento

Fazer uma **lista do materia**l a utilizar tendo em conta os procedimentos exemplificados nas fotografias seguintes

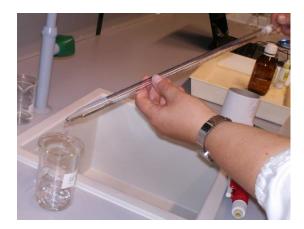
A- Titulação por volumetria:

5.1- Lavagem da bureta:

Colocar num copo de enchimento uma porção da solução de NaOH, verificar se a torneira da bureta está fechada e introduzir uma pequena quantidade desta solução na bureta.

5.2- Retirar a bureta do suporte e rodando passar todo o interior pela solução de lavagem.

5.3- Colocar a bureta no suporte e despejar a solução de lavagem para um copo de restos devidamente identificado.


Repetir este procedimento.

5.4- Após a lavagem encher a bureta acima do traço de referência, cuidadosamente evitando a formação de bolhas de ar. Acertá-la deixando escorrer o excesso e verificar se a zona da torneira ficou totalmente cheia com a solução. Deve ter em conta que a parte inferior do menisco deve ficar sobre o traço de referência. Esta observação de ser feita de modo a evitar erros de paralaxe.

5.5- Pipetar para uma pipeta de 10 mL um pouco da solução de ácido. Proceder à lavagem da pipeta e desprezar a solução de lavagem. Repetir este procedimento.

5.6- Medir para um Erlenmeyer 10 mL de solução de HCl

5.7- Adicionar 3 gotas de um indicador ácido base apropriado.

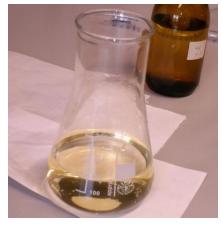
5.8- Adicionar, gota a gota, o titulante ao titulado agitando sempre até que se verifique a mudança de cor do indicador, por adição de apenas uma gota. A cor deve manter-se pelo menos por 30 s.

Nota: deve ter em atenção que o volume de titulante gasto não ultrapasse o volume máximo medido pela bureta. Se for necessário utilizar todo o volume medido pela bureta deve voltar a enchê-la até zero antes de finalizar a titulação.

5.9- Fazer a leitura do volume de titulante gasto. Registar o valor lido tendo em conta os algarismos significativos e o erro de medição da bureta utilizada.

5.10- Voltar a encher a bureta e repetir os passos 5.6 a 5.9 até obter no mínimo 3 valores concordantes (valores que diferem entre si no máximo 0,1 mL)

Lista de material


Material	Quantidade

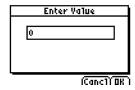
B- Curva de titulação utilizando a máquina de calcular gráfica.

Procedimento

- 6.1- Lavar a bureta com NaHO.
- 6.2- Encher a bureta com solução de NaOH, $0.10~{
 m molL}^{-1}$
- 6.3- Pipetar 20.0 mL de solução de HCl para um erlenmeyer de boca larga (ou para um copo).
- 6.4- Adicionar cerca 20 mL de água destilada e colocar ainda 3 gotas do indicador escolhido.

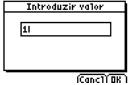
- 6.5- Introduzir no erlenmeyer o agitador magnético.
- 6.6- Montar a experiência como mostra a figura.

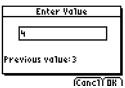
- 6.6.1- Usando um cabo de ligação, Ligue o analisador de dados (CBL) à calculadora gráfica.
- 6.6.2- Ligar a sonda de pH à porta CH1 do CBL.
- 6.6.3- Inserir a sonda de pH no frasco e colocar debaixo da bureta. Ter cuidado ra o agitador não tocar no sensor Ligar a agitação magnética da placa de modo a solução ser continuamente agitada.
- 6.7- Na calculadora, execute o programa ou a aplicação* EASYDATA (APPS)


1335 Chille 61CabriJr 7: CelSheet 8: Conics 9: Ctl9Help 0: DataMIn2 15 EasyData JEunSci

A Aplicação EasyData identifica automaticamente o sensor de pH

6.8- Escolher Setup e a opção Events With entry

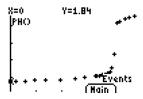

Depois de lhe aparecer o valor de pH faça Keep (na tecla window)



A máquina vai pedir para introduzir o valor do volume (neste caso é zero pois ainda não adicionámos titulante) e indique o volume e faça **ok** (tecla **graph**)

Adicionar um volume à escolha (por exemplo 1 mL). Deixar estabilizar o valor do pH e introduzir o volume. Proceder sempre da mesma forma. Quando o valor do pH

começar a variar mais rapidamente pode-se adicionar menores volumes (por exemplo de 0,5 em 0,5 mL), fazendo o registo dos valores adicionados.


Proceda desta forma até ter todos os valores que pretende, para terminar faça **stop** (tecla **zoom**)

A calculadora indica onde gaurdou os dados da experiência.

Fazer OK.

- 6.9- Quando a gravação dos dados terminar. Remover o sensor de pH da solução, lavá-lo e secá-lo com cuidado.
- 6.10- Quando a experência termina aparecerá imediatamente o gráfico.

Material	Quantidade

- 7- Reunir o material
- 8- Proceder à titulação por cada um dos processos após discutir qual o indicador mais adequado a este tipo de titulação.

Cálculo da concentração da solução ácida

Processo A

Registo de resultados:

Titulação	Volume de NaOH 0,1 mol/dm³adicionado (mL)	
1		
2		
3		
4		
Volume médio dos valores concordantes (mL)		

Cálculos:

Calcular a quantidade de NaOH existente no $V_{\text{m\'edio}}$ que reagiu.

Escrever a equação que traduz a reacção entre o ácido e a base:

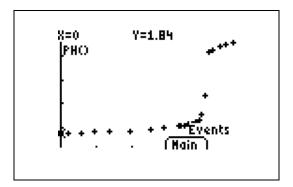
Relacionar a quantidade de ácido e de base:

Calcular a concentração do ácido tendo em conta o volume de ácido usado na titulação (10 mL)

Para debater:

Discutir com os outros grupos e o professor os resultados obtidos nos cálculos. Corrigir, se necessário.

Identificar as dificuldades sentidas na realização deste tipo de titulação.


Identificar as principais causas de erros.

Discutir quais as vantagens deste método.

Processo B

ANÁLISE DE DADOS:

A máquina de calcular (no caso desta titulação) apresentará um gráfico do tipo:

Exploração da curva de titulação:

- Verificar qual o valor do pH no ponto de equivalência tendo em conta o tipo de ácido e de base utilizados.
- Determinar qual o volume de titulante adicionado até atingir o ponto de equivalência.
- Calcular a concentração da solução de titulado de modo idêntico ao que fez no primeiro método.

Discussão geral de resultados:

- Comparar os resultados obtidos pelos dois processos.
- Discutir se o facto de ter adicionado cerca de 20 mL de água destilada ao titulado vai afectar o valor obtido para a concentração do ácido.
- Verificar se seria apropriado usar a fenolftaleína para determinar o ponto final da titulação.

INDICAÇÕES PARA O PROFESSOR:

Verificar significados

Termo	Breve descrição
Titulação	Processo de determinar a concentração de uma solução
Titulante	Solução de concentração rigorosamente conhecida
Titulado	Solução a que se vai determinar a concentração
Indicador ácido-base	Substância que apresenta diferente cor consoante o pH do meio
Ponto de equivalência	Quando ácido e base estão presentes em quantidades estequiométricas
Ponto final	Ponto em que há uma variação brusca de uma propriedade física ou química detectável
Curva de titulação	Curva de pH em função do volume de titulante adicionado
Erro da titulação	Diferença entre o ponto de equivalência e o ponto final da titulação

Procedimento

A- Titulação por volumetria:

Lista de material

Material	Quantidade
Solução NaOH 1 mol/dm³	
Solução de HCl de concentração desconhecida	
Indicador ácido base (Ex: azul de bromotimol)	1
Copo de 200 mL	2
Suporte Universal com borboleta	1
Bureta	1
Pipeta	1
pipetador	1
Erlenmeyer	6
Papel absorvente	1

B- Curva de titulação utilizando a máquina de calcular gráfica.

Material	Quantidade
Máquina de calcular gráfica (TI)	1
CBL	1
Suporte Universal com borboleta	1
Sensor de pH para a máquina gráfica	1
Placa com agitação magnética	1
Noz e garra	1

Bureta	1
Pipetador	1
Pipeta	1
Erlenmeyer de boca larga (ou copo de 250mL)	3
Copo de 200 mL	2
Papel absorvente	1
Solução NaOH 1 mol/dm³	
Solução de HCl de concentração desconhecida	
Azul de bromotimol (ou vermelho neutro ou tornesol)	

Cálculos:

Calcular a quantidade de NaOH existente no V_{médio} que reagiu.

$$n_b = c_b \times V_b$$

(Usar como volume de base a média dos valores concordantes

• Escrever a equação que traduz a reacção entre o ácido e a base:

NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l)

• Relacionar a quantidade de ácido e de base:

1mol base - 1 mol ácido

 Calcular a concentração do ácido tendo em conta o volume de ácido usado na titulação (10 mL)

$$C_a = n_a / V_a$$

Para debater:

Discutir com os outros grupos e o professor os resultados obtidos nos cálculos. Corrigir, se necessário.

Identificar as dificuldades sentidas na realização deste tipo de titulação.

Dificuldade em determinar o ponto final da titulação

A solução após a viragem do indicador nem sempre o fica com a mesma cor, o que indica que por vezes foi adicionado um ligeiro excesso de titulante.

Dificuldades no manuseamento da bureta...

Identificar as principais causas de erros.

Erros cometidos na medição do volume de titulante

Erros na leitura dos volumes de titulante.

Excesso de titulante adicionado...

Discutir quais as vantagens deste método.

É um método rápido, que se pode efectuar com pequenas quantidades de reagentes.

O facto de se efectuarem diversas titulações diminui a incerteza na determinação do volume de equivalência.

Exploração da curva de titulação:

- Verificar qual o valor do pH no ponto de equivalência tendo em conta o tipo de ácido e de base utilizados.
 - Nesta titulação o pH no ponto de equivalência é neutro (pH =7) visto tratar-se de uma reacção entre um ácido forte e uma base forte
- Determinar qual o volume de titulante adicionado até atingir o ponto de equivalência.

Se formos ao gráfico podemos ver qual o valor do volume que corresponde ao valor de pH 7, o que nos permite posteriormente efectuar os cálculos.

 Calcular a concentração da solução de titulado de modo idêntico ao que fez no primeiro método.

Discussão geral de resultados:

- Comparar os resultados obtidos pelos dois processos.
- Discutir se o facto de ter adicionado cerca de 20 mL de água destilada ao titulado vai afectar o valor obtido para a concentração do ácido.
 Adicionamos água destilada com o propósito de aumentar o volome de titulado de modo ao sensor ter possibilidade de fazer a leitura mais facilmente e também para que possamos usar o agitador magnético sem que este colida com o sensor.
 Apesar da solução ficar mais diluída a quantidade de ácido que reage não é alterada.
 Ao calcular a concentração do ácido iremos usar o volume de solução utilizada (neste caso 20 mL)
- Verificar se seria apropriado usar a fenolftaleína para determinar o ponto final da titulação.

Como já estudámos, um indicador para ser apropriado deve:

- 1- Incluir na sua zona de viragem o valor do pH no ponto de equivalência.
- 2- Caso haja mais do que um indicador nessas condições é mais apropriado aquele que tiver a zona de viragem mais estreita.

No caso da fenolftaleína o primeiro critério não se verifica. Apesar dessa limitação podemos facilmente verificar que como se trata de uma titulação ácido forte — base forte a zona de viragem do indicador está incluída no intervalo de variação brusca do pH pelo que o erro cometido ao usar este indicador não é significativo.

Notas:

- Esta actividade pode ser feita com diferentes tipos de ácidos e bases;
- Parece-me ser de grande interesse realizar, recorrendo à máquina de calcular gráfica, uma titulação; ácido forte – base forte; ácido fraco – base forte e ácido forte – base fraca.
- Se traçarmos o gráfico de pH em função do tempo (em vez de ser em função do volume) podemos obter, de forma rápida, a curva de titulação e verificar as diferenças entre as curvas dos diferentes tipos de titulação.
- No caso da curva de titulação o uso de um indicador não é obrigatório mas ajuda a visualizar o ponto de equivalência.
- Será também de interesse titular uma base usando desta vez o ácido como titulante.

A partir da análise das curvas de titulação também podemos explorar os critérios a usar para a escolha do indicador mais apropriado para cada tipo de titulação.