VOU SEPARAR OS COMPONENTES DE UMA MISTURA

O que se pretende

- **1 Seleccionar material** adequado à separação dos componentes de uma mistura heterogénea.
- **2 Descrever o procedimento** necessário para cada um dos processos físicos apresentados.
- **3 Identificar a propriedade física** de cada componente da mistura que permite efectuar o processo de separação escolhido.

Verificar significados...

4 Escrever breves descrições dos seguintes termos:

termo	Breve descrição		
Misturas	Materiais formados por duas ou mais substâncias que se chamam		
	constituintes da mistura.		
componente	Substância constituinte da mistura.		
Mistura heterogénea	É possível distinguir alguns dos seus constituintes.		
Mistura homogénea	Não é possível distinguir alguns dos seus constituintes.		
Propriedades físicas	Permitem caracterizar as substâncias. São exemplos a massa		
	volúmica, ponto de fusão, ponto de ebulição, solubilidade		
Decantação	Técnica que permite separar um sólido de um líquido, deixando depositar o		
	primeiro, e vertendo depois, lentamente, o líquido.		
Filtração	Técnica que permite separar sólidos de líquidos pela passagem da mistura		
	através de um filtro.		
Dissolução	Liquefacção de um sólido em contacto com um líquido.		
Cristalização	Técnica utilizada para separar um sólido dissolvido num líquido de		
	maneira a obter cristais.		

PROCEDIMENTO

5 Fazer uma lista do material a utilizar, tendo em conta o procedimento exemplificado nas fotografias seguintes.

5.1

Adicionar uma certa quantidade de água à mistura constituída por areia, sulfato de cobre(II) e enxofre cristalizado.

(Copo de precipitação, esguicho)

5.2

Decantar essa mistura para separar a areia

(copo de precipitação, vareta de vidro)

5.3

Filtrar a mistura constituída, agora, pela solução aquosa de sulfato de cobre(II) e enxofre cristalizado.

(funil de vidro, papel de filtro, argola, suporte com noz, garra e argola)

5.4

Deixar evaporar a água.

(caixa de Petri)

5.5

Recolher os cristais de sulfato de cobre (II) passados alguns dias.

5.6 Lista de material:

Descrição	Quantidade
Areia (ou cascalho)	1
Sulfato de cobre (II)	1
Enxofre cristalizado	1
Esguicho com água destilada	1
Copo de precipitação	3
Funil de vidro	1
Vareta de vidro	1
Papel de filtro	1
Caixa de Petri	1
Suporte com noz, garra e argolas	1

6.Discutir com os colegas de grupo e o professor a sequência dos processos físicos utilizados na obtenção de cada um dos constituintes da mistura apresentada. Corrigir se necessário.

7. Reunir o material necessário.

8. Realizar a actividade proposta, considerando a seguinte procedimento

- Colocar num copo de precipitação a mistura constituída por areia, sulfato de cobre(II) e enxofre cristalizado.
- Adicionar uma certa quantidade de água à mistura.
- Com o auxilio de uma vareta procurar dissolver todos os constituintes da mistura e posteriormente, deixar repousá-la, durante aproximadamente um minuto.
- Com o auxilio da vareta, decantar a mistura para um copo de precipitação, de modo a separar a areia.
- Usar a montagem referida na figura 5.3 para filtrar a mistura constituída, agora, pela solução aquosa de sulfato de cobre(II) e enxofre cristalizado. (não esquecer de colocar o papel de filtro, devidamente dobrado no funil e de usar um copo de precipitação para recolher o filtrado).
- Transferir o filtrado (solução de sulfato de cobre(II)) do copo de precipitação para uma caixa de Petri.
- Deixar evaporar a água.
- Recolher os cristais de sulfato de cobre (II) passados alguns dias.

9. Registar na tabela as observações efectuadas:

Discrição da observação	Processo físico de separação	Identificação da propriedade física que permite o processo utilizado
Ao juntar a água à mistura, apenas o sulfato de cobre(II) se dissolve. A areia deposita-se no copo e o enxofre flutua na água.	Dissolução fraccionada	Diferentes solubilidades em água dos constituintes da mistura.
Apenas a areia (cascalho) que se encontra em deposito, se separa dos restantes constituintes da mistura.	Decantação	Diferentes valores de massa volúmica (densidades) dos constituintes da mistura.
Discrição da observação	Processo físico de separação	Identificação da propriedade física que permite o processo utilizado
As partículas sólidas de maiores dimensões ficam retidas no papel de filtro (resíduo) e as partículas de menores dimensões atravessam o papel de filtro, formando o filtrado.	Filtração	Diferentes dimensões das partículas sólidas que se encontram em suspensão no líquido.
O sólido dissolvido é recuperado por evaporação lenta da água (solvente).	Cristalização	Formação de cristais de sulfato de cobre(II).

10. Análise e discussão dos resultados:

10.1 Quantos processos de separação foram necessários para separar todos os constituintes da mistura?

Para separar todos os constituintes da mistura foi necessário utilizar quatro processos.

- **10.2** Algum dos componentes foi separado usando mais do que um processo de separação? Qual(ais)?
 - O sulfato de cobre (II) foi o componente que se obteve isoladamente, a partir de três processos de separação. Esses processos foram: a dissolução fraccionada, a filtração e a cristalização.
- **10.3** Algum dos processos permitiu separar mais do que um constituinte em diferentes etapas? Qual e porquê?
 - O processo da decantação, permitiu separar a areia do enxofre, porque o enxofre apresenta menor densidade e permitiu separar o sulfato de cobre (II) porque este está dissolvido na água.
- **10.4** Se quiséssemos recuperar a água, qual o processo físico de separação mais adequado para a obter? (*se necessário consulta o teu manual*)

Se quiséssemos recuperar a água, a partir da solução de sulfato de cobre(II) teria de efectuar uma destilação simples.