APL 2.1 – ENERGIA CINÉTICA AO LONGO DE UM PLANO INCLINADO

Questão — Problema: Um carro encontra-se parado no cimo de uma rampa. Acidentalmente, é destravado e começa a descer a rampa.

Como se relaciona a energia cinética do centro de massa do carrinho com a distância percorrida ao longo da rampa?

Objecto de ensino

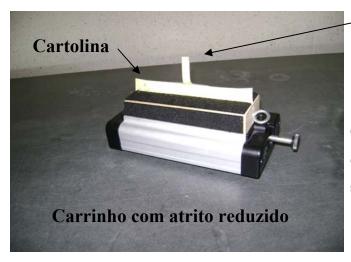
- Velocidade instantânea
- Energia cinética

Objectivos

- Determinar a velocidade instantânea de um carrinho em diferentes pontos de uma rampa,
 quando abandonado no extremo superior, sempre da mesma posição.
- Relacionar a energia cinética do CM do carrinho com a velocidade.
- Relacionar a energia cinética do CM do carrinho com a distância percorrida ao longo da rampa.
- Relacionar a energia cinética do CM do carrinho com a inclinação do plano.

Questões pré-laboratoriais

- 1. Que tipo de movimento é que o carrinho vai adquirir?
- 2. Qual o significado de velocidade instantânea? Justifica.
- **3.** Quais as grandezas que determinam a inclinação de um rampa?
- **4.** A maior ou menor inclinação de uma rampa, terá influência na velocidade com que o carrinho chega ao fim da rampa?
- **5.** De que grandezas depende a energia cinética?


- **6.** Identifica a força responsável pelo movimento do carrinho. Justifica.
- 7. Como se designa o trabalho realizado por esta força?
- 8. Qual a relação entre o trabalho realizado por esta força e a variação de energia cinética?

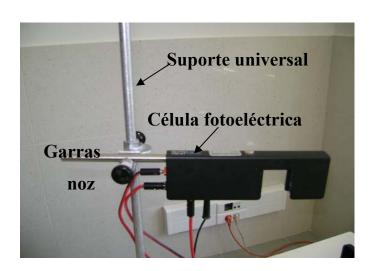
Respostas às questões pré-laboratoriais

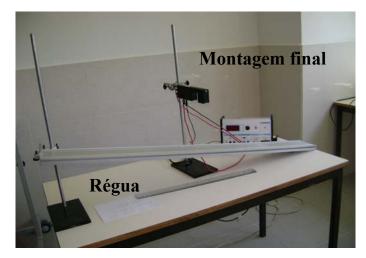
Trabalho laboratorial

Para observar o movimento do carrinho na calha utiliza o seguinte material:

- Balança electrónica
- Régua metálica graduada (calha)
- Digitímetro
- Célula fotoeléctrica
- Fios de ligação
- Carrinho com rodas e uma cartolina
- Suporte universal, noz e garras
- Régua

Medir o comprimento da cartolina que atravessa o feixe de luz


O carrinho é sempre colocado no topo da calha, marcando a posição aproximada do seu CM



O digitímetro mede o intervalo de tempo em que o feixe de luz esteve interrompido.

Cuidado com as unidades!!!

Para minimizar os erros experimentais, realizar três medições para a mesma posição da célula fotoeléctrica - carrinho.

Fazer medições para quatro posições diferentes da célula fotoeléctrica - carrinho.

- 1. Com o material referido, planeia a actividade experimental que permita lançar um carrinho ao longo de uma rampa com uma inclinação predefinida, com a finalidade de determinar a velocidade instantânea, em diferentes posições, indicando:
 - **1.1.** todos os procedimentos a seguir;
 - **1.2.** Após efectuares a montagem, mede e regista numa tabela:
 - a) as distâncias percorrida pelo CM do carrinho;
 - b) as grandezas necessárias ao cálculo da velocidade instantânea,
 - c) as grandezas necessárias ao cálculo da energia cinética.

Respostas

1.2. Tabela de registo de dados

m _{carrinho}	d _{cartolina}	$\Delta x = x_f - x_i$	Δt (s)

Questões pós-laboratoriais

- **1.** Descreve de forma sucinta, indicando todas as etapas, que conduziram à resolução do problema proposto inicialmente.
- 2. Como se relaciona a energia cinética do centro de massa do carrinho com:
 - **2.1.** a velocidade adquirida pelo carrinho ao longo da rampa;
 - **2.2.** a distância percorrida ao longo da rampa.
- 3. Apresenta a tabela de registos de dados, as medidas efectuadas e os cálculos realizados.
- **4.** Obtém, na calculadora, (ou no MSExcel) o gráfico da variação da energia cinética em função da distância, determinando a equação da linha recta que melhor se ajusta ao conjunto de pontos experimentais.
- 5. Interpreta a equação que obtiveste.
- **6.** Compara o valor da massa que calculaste por regressão linear com o valor da massa determinado na balança, discutindo a aproximação feita de o sistema ser conservativo.

Respostas às Questões pós-laboratoriais

Tabela de registo de dados

$\Delta x = x_f - x_i$	Δt (s)	$\Delta t_{\rm medio}(s)$	v (m.s ⁻¹)	$E_c(J)$

Ex: cálculo do valor da energia cinética do CM do carrinho para a posição $\Delta x = 30$ cm

Sugestões de avaliação

- Deverá ser feita a avaliação do trabalho laboratorial executado pelos alunos através do preenchimento de uma grelha própria.
- Será também avaliado o relatório feito pelos alunos de que constem:
 - as respostas às questões pré-laboratoriais;
 - justificação das grandezas escolhidas para determinação da velocidade instantânea;
 - interpretação do gráfico da energia cinética em função da distância;
 - interpretação do declive da recta obtida no gráfico
 - as respostas às questões pós-laboratoriais.
- Discussão dos resultados obtidos pelos vários grupos em que podem ser utilizadas inclinações diferentes.
- Pode ainda ser utilizada uma ficha para auto-avaliação dos alunos.

A professora Celeste da Queija

APL 2.1 – ENERGIA CINÉTICA AO LONGO DE UM PLANO INCLINADO

Questão — Problema: Um carro encontra-se parado no cimo de uma rampa. Acidentalmente, é destravado e começa a descer a rampa.

Como se relaciona a energia cinética do centro de massa do carrinho com a distância percorrida ao longo da rampa?

Objecto de ensino

- Velocidade instantânea
- Energia cinética

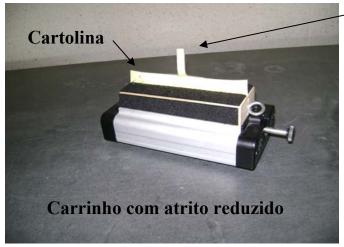
Objectivos

- Determinar a velocidade instantânea de um carrinho em diferentes pontos de uma rampa,
 quando abandonado no extremo superior, sempre da mesma posição.
- Relacionar a energia cinética do CM do carrinho com a velocidade.
- Relacionar a energia cinética do CM do carrinho com a distância percorrida ao longo da rampa.
- Relacionar a energia cinética do CM do carrinho com a inclinação do plano.

Questões pré-laboratoriais

- 1. Que tipo de movimento é que o carrinho vai adquirir?
- 2. Qual o significado de velocidade instantânea? Justifica.
- **3.** Quais as grandezas que determinam a inclinação de um rampa?
- **4.** A maior ou menor inclinação de uma rampa, terá influência na velocidade com que o carrinho chega ao fim da rampa?
- **5.** De que grandezas depende a energia cinética?

- 6. Identifica a força responsável pelo movimento do carrinho. Justifica.
- 7. Como se designa o trabalho realizado por esta força?
- 8. Qual a relação entre o trabalho realizado por esta força e a variação de energia cinética?


Respostas

- 1. Vai adquirir um movimento uniformemente acelerado.
- **2.** É a velocidade que o carrinho possui num determinado instante. Neste caso particular, quando passa na célula fotoeléctrica.
- **3.** A altura e o comprimento da rampa, que se reflecte no ângulo que a rampa forma com o plano horizontal.
- **4.** Sim, quanto maior for a inclinação de uma rampa, maior será a velocidade com que com do carrinho chega ao fim da rampa.
- 5. Depende da massa do corpo e da velocidade adquirida.
- **6.** A força responsável pelo movimento do carrinho é o peso. Terá de ser desdobrado nas suas componentes P_x e P_y , sendo que a componente P_y com R_n (reacção normal do plano sobre o corpo) têm resultante nula, ficando apenas a componente P_x , que será a força resultante ou força eficaz (sistema conservativo).
- 7. Trabalho positivo ou motor ou potente.
- 8. O W_{Fr} = ΔE_c (O trabalho realizado pela resultante das forças é igual à variação de energia cinética sofrida pelo carrinho Teorema da Energia Cinética)

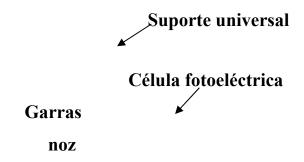
Trabalho laboratorial

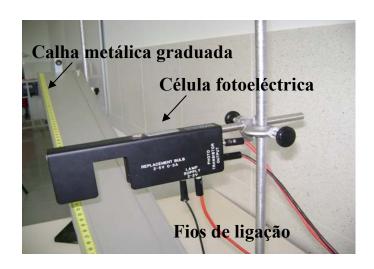
Para observar o movimento do carrinho na calha utiliza o seguinte material:

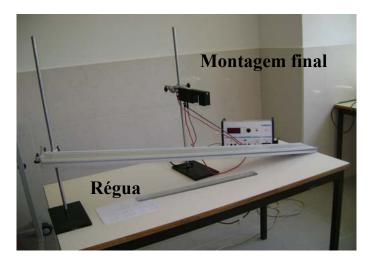
- Balança electrónica
- Régua metálica graduada (calha)
- Digitímetro
- Célula fotoeléctrica
- Fios de ligação
- Carrinho com rodas e uma cartolina
- Suporte universal, noz e garras
- Régua

Medir o comprimento da cartolina que atravessa o feixe de luz

O carrinho é sempre colocado no topo da calha, marcando a posição aproximada do seu CM






O digitímetro mede o intervalo de tempo em que o feixe de luz esteve interrompido.

Cuidado com as unidades!!!

Para minimizar os erros experimentais, realizar três medições para a mesma posição da célula fotoeléctrica - carrinho.

Fazer medições para quatro posições diferentes da célula fotoeléctrica - carrinho.

1. Com o material referido, planeia a actividade experimental que permita lançar um carrinho ao longo de uma rampa com uma inclinação predefinida, com a finalidade de determinar a velocidade instantânea, indicando:

- **1.1.** todos os procedimentos a seguir;
- **1.2.** Após efectuares a montagem, mede e regista numa tabela:
 - a) as distâncias percorrida pelo CM do carrinho;
 - b) as grandezas necessárias ao cálculo da velocidade instantânea,
 - c) as grandezas necessárias ao cálculo da energia cinética.

Respostas

1.1.

- Faz-se a montagem de acordo com o esquema apresentado.
- Pesa-se o carrinho, numa balança electrónica (m = 0,63694 g)
- Com uma régua mede-se a parte superior da cartolina que se encontra encaixada no carrinho, que irá interromper o feixe de luz na célula fotoeléctrica, aquando da passagem do carrinho (d = 0,7cm).
- Com uma régua mede-se a altura do plano num determinado ponto e o correspondente comprimento, para se determinar a inclinação. (h = 25 cm e l = 130 cm).
- Coloca-se o carrinho no topo da rampa, assinala-se o seu CM e regista-se a posição correspondente. ($x_{CM} = 10 \text{ cm}$).
- Um aluno deixa cair o carrinho e outro ligou o digitímetro, que registou o tempo em que o feixe de luz foi interrompido pela passagem do carrinho.
- Fazem-se três medições para a mesma posição do carrinho.
- Fazer medições para quatro posições diferentes da célula fotoeléctrica carrinho

1.2. Tabela de registo de dados

m _{carrinho}	$\mathbf{d}_{ ext{cartolina}}$	$\Delta \mathbf{x} = \mathbf{x}_{\mathbf{f}} - \mathbf{x}_{\mathbf{i}}$	Δt (s)
0,63694 g	0,7cm	40-10 = 30 cm	6,6 x 10 ⁻³ 6,6 x 10 ⁻³ 6,5 x 10 ⁻³
		50-10 = 40 cm	5,8 x 10 ⁻³ 5,9 x 10 ⁻³ 6,1 x 10 ⁻³
		60-10 = 50 cm	5,3 x 10 ⁻³ 5,2 x 10 ⁻³ 5,2 x 10 ⁻³
		70-10 = 60 cm	4,4 x 10 ⁻³ 4,4 x 10 ⁻³ 4,4 x 10 ⁻³

Questões pós-laboratoriais

- **1.** Descreve de forma sucinta, indicando todas as etapas, que conduziram à resolução do problema proposto inicialmente.
- 2. Como se relaciona a energia cinética do centro de massa do carrinho com:
 - **2.1.** a velocidade adquirida pelo carrinho ao longo da rampa;
 - **2.2.** a distância percorrida ao longo da rampa.
- 3. Apresenta a tabela de registos de dados, as medidas efectuadas e os cálculos realizados.
- **4.** Obtém, na calculadora, (ou no MSExcel) o gráfico da variação da energia cinética em função da distância, determinando a equação da linha recta que melhor se ajusta ao conjunto de pontos experimentais.
- 5. Interpreta a equação que obtiveste.
- **6.** Compara o valor da massa que calculaste por regressão linear com o valor da massa determinado na balança, discutindo a aproximação feita de o sistema ser conservativo.

Respostas

1. Descrição sucinta das etapas para a resolução do problema proposto

- Foi calculado o valor da velocidade instantânea do CM do carrinho nas diferentes posições, a partir da $d_{cartolina} = 0.7$ cm = 0.007 m e o intervalo de tempo registado no digitímetro, para cada posição, (v = d / Δt).
- De seguida, calculou-se o valor da energia cinética do CM do carrinho, sabendo o valor da massa e da velocidade instantânea, $(E_c = \frac{1}{2} \text{ m.v}^2)$.
- **2.1.** A energia cinética do centro de massa do carrinho aumenta com o valor da velocidade adquirida ao longo da rampa.
- **2.2.** A energia cinética do centro de massa do carrinho aumenta com o valor a distância percorrida ao longo da rampa.

3. Tabela de registo de dados

$\Delta \mathbf{x} = \mathbf{x_f} - \mathbf{x_i}$	Δt (s)	$\Delta t_{ m medio}(s)$	v (m.s ⁻¹)	$E_c(J)$
10-10 = 0 cm	0	0	0	0,000
40-10 = 30 cm 0,30 m	6,60 x 10 ⁻³ 6,60 x 10 ⁻³ 6,50 x 10 ⁻³	6,57 x 10 ⁻³	1,065	0,3615
50-10 = 40 cm 0,40 m	5,8 x 10 ⁻³ 5,9 x 10 ⁻³ 6,1 x 10 ⁻³	5,93 x 10 ⁻³	1,180	0,4434
60-10 = 50 cm 0,50 m	5,3 x 10 ⁻³ 5,2 x 10 ⁻³ 5,2 x 10 ⁻³	5,23 x 10 ⁻³	1,338	0,5705
70-10 = 60 cm	4,8 x 10 ⁻³ 4,9 x 10 ⁻³	4,80 x 10 ⁻³	1,458	0,6773
0,60 m 80-10 = 70 cm	4,7 x 10 ⁻³ 4,4 x 10 ⁻³ 4,4 x 10 ⁻³	4,40 x 10 ⁻³	1,591	0,8060
0,70 m	$4,4 \times 10^{-3}$			

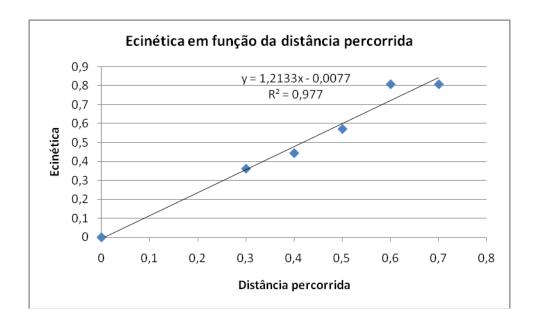
Ex: cálculo do valor da energia cinética do CM do carrinho para a posição $\Delta x = 30$ cm

Dados: $\Delta x = 0.30 \text{ m}$

$$\Delta t_{\text{medio}} = 6.5 \times 10^{-3} \text{s}$$

$$m = 0.63694 g$$

Cálculos:


• Da velocidade instantânea

$$v = d / \Delta t$$
 \Longrightarrow $v = 0.007 / 6.57 \times 10^{-3}$ \Longrightarrow $v = 1.065 \text{ m.s}^{-1}$

• do valor da energia cinética do CM do carrinho

$$E_c = \frac{1}{2} \text{ m.v}^2$$
 $E_c = \frac{1}{2} \cdot 0,63694 \cdot 1,065^2$ $E_c = 0,3615 \text{ J}$

4. Gráfico da Energia cinética em função da distância percorrida pelo carrinho

- 5. A equação da linha recta (y =1,2133x 0,0077) que melhor se ajusta ao conjunto de pontos experimentais informa que o declive dessa recta é o valor de P_x , isto porque, aplicando o Teorema da Energia Cinética, $\Delta E_c = W_{Fr}$ \Longrightarrow como $F_r = P_x$ \Longrightarrow $E_c = P_x$. d.cos α \Longrightarrow declive = $P_x = 1,2133$
- **6.** Pode-se determinar o valor da massa a partir do declive da recta, assim:

$$P_x = m.g.senα$$
 senα = h/l ⇒ senα = 25/130=0,192
1,213 = m. 9,8. 0,192 ⇒ m = 0,6446g (valor experimental)
m(balança) = 0,63694g
% de erro = { | $x_{real} - x_{exp}| / x_{real}$ } .100%
% de erro = | 0,63694 - 0,64466 | / 0,63694
% de erro = 0,012.100% ⇒ % de erro = 1,2126%

A percentagem de erro é insignificante, partindo do pressuposto que o sistema é conservativo, não estamos a ter em conta eventuais perdas por atrito entre o carrinho e a superfície, por isso a força resultante, ou força eficaz é apenas o peso do carrinho.