

MOVIMENTOS OSCILATÓRIOS

Objectivos

- 1. Caracterizar a periodicidade em movimentos oscilatórios pelo período ou pela frequência.
- 2. Identificar um movimento harmónico simples (MHS) com o movimento oscilatório de um corpo sujeito a uma força elástica.
- 3. Descrever o comportamento da força elástica através da Lei de Hooke.
- 4. Relacionar a frequência angular com a constante elástica e com a massa do oscilador no MHS.
- 5. Distinguir um parâmetro intrínseco do oscilador (frequência angular) das grandezas que dependem das condições iniciais do movimento (amplitude e fase inicial).
- 6. Reconhecer a expressão $x = A\sin(\omega t + \varphi)$ como solução da equação fundamental da dinâmica para o MHS e interpretar o seu significado.
- 7. Interpretar gráficos de elongação em função do tempo.
- 8. Reconhecer que a amplitude dos osciladores reais diminui com o tempo, ou seja, estão sujeitos a amortecimento.
- 9. Identificar a ressonância como a tendência de um oscilador para oscilar em máxima amplitude apenas para certas frequências. (não faz parte do programa 12.º Física mas se houver tempo, é certamente interessante).

Sugestões metodológicas

Esta proposta visa uma abordagem experimental, de investigação, para o movimento oscilatório. Propõe-se uma actividade realizada em comum por toda a turma.

Partindo de uma questão de motivação e do conhecimento da lei de um oscilador harmónico procede-se a uma revisão de conceitos.

Depois estuda-se experimentalmente o movimento oscilatório.

Questão de motivação

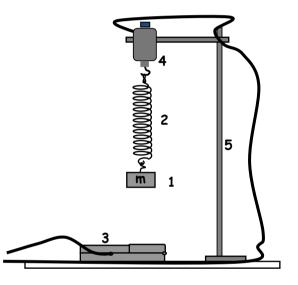
Nas estações espaciais os astronautas não podem medir a sua massa como se faz na Terra. Como se poderá determinar, ao longo da sua permanência no espaço, um aumento ou uma diminuição da massa de um astronauta?

Sugerir que a solução da questão está relacionada com:

$$x = A\sin(\omega t)$$

Significados

Conceitos	Descrição
Posição de repouso (de equilíbrio)	Posição em que uma massa se encontra quando em repouso.
Movimento oscilatório	Movimento em torno da posição de equilíbrio
Amplitude do movimento (A)	Distância da posição de equilíbrio à posição de afastamento máximo
Período (<i>T</i>)	Tempo que decorre entre a passagem consecutiva numa posição de afastamento máximo ou tempo para se completar um ciclo do movimento
Frequência (f)	Número de vezes que o movimento se repete na unidade de tempo
Frequência angular (ω)	Variação temporal de um ângulo; $\omega = 2\pi f = \frac{2\pi}{T}$


Procedimento

A- Legenda e descrição do equipamento usado

- 1- Massa para estudo do movimento oscilatório
- 2- Mola elástica
- 3- Sensor de posição fornece a posição da massa
- 4- <u>Sensor de força dá a força no apoio (força na massa</u> e ... na mola (soma))
- 5- Suporte universal
- 6- Interface dos sensores para registo dos dados

(Os interfaces dependem do equipamento que estiver disponível. Tendo em conta o que dispomos na nossa escola referir-nos-emos ao sistema da TexasIntruments – CBL e máquina de calcular, Software TIConnect e computador.

Esquema de montagem

Note-se, no entanto, que este sistema tem muitas limitações em relações a outros — uso de pilhas, número de dados a adquirir, rapidez, software nem sempre fácil de usar ...)

Descrição do processo de aquisição de dados (Exemplo com a

TInstruments)

- 1- Efectuar a montagem indicada no esquema. Ter, também, o cuidado absoluto de não deixar cair a massa sobre o CBR, quer na preparação quer na execução.
 - (Nota: com alguns CBR sensor de posição -, devido a limitações do seu funcionamento, ele deve estar a mais de 40 a 50 cm do corpo que irá oscilar.)
- 2- Ligar os sensores ao CBL e este à máquina gráfica. O CBR deve ser ligado ao canal DIG/SONIC.
- 3- Na máquina, depois de pressionar **APPS**, iniciar um programa de aquisição de dados. Por exemplo, procurar o **DataMin2** (ou outro equivalente).
- 4- Para recolha de dados devem verificar-se primeiro as definições do programa de aquisição. **DataMin2** escolher a opção **1:SETUP**.

Escolher também o MODE: TIME GRAPH e depois 2: TIME GRAPH.

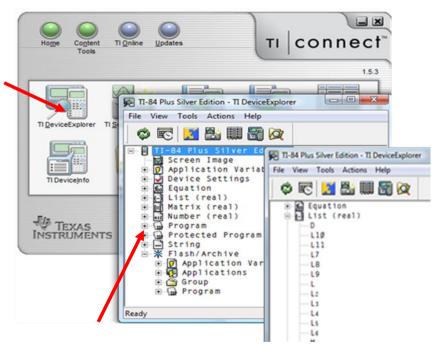
Definir o intervalo entre amostras (0,01 s) e o número de amostras (200).

5- Colocar a massa numa situação de equilíbrio e registar a posição e a força.

$$X=0,167 \text{ m}$$
; $F=-8,57 \text{ N}$

6- Colocar a massa a oscilar e pressionar 2:START.

Massa usada m_1 = 100 g.

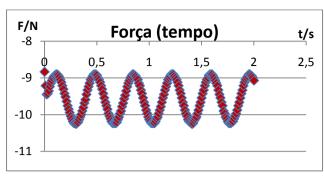

Após a recolha de dados, os gráficos F(t) e x(t) podem visualizar-se.

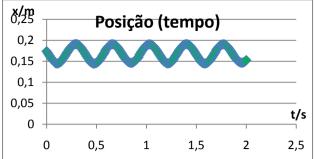
Numa situação de experiência centrada, usar por exemplo a câmara Web (ou outra) para todos poderem observar o aspecto dos gráficos.

Após sair do programa (opção **QUIT**), os dados serão registados em listas: tempo em L1, força em L2, e posição em L6.


7- Nesta proposta sugere-se que os dados sejam transferidos para o computador, com a ligação do cabo à máquina de calcular e com o uso do Software TIConnect.

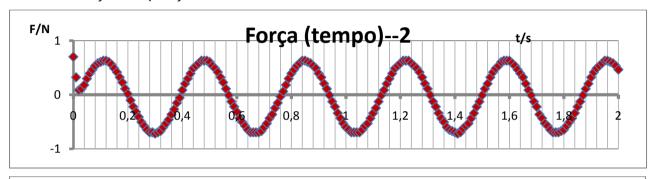
Ver sequência na Imagem seguinte. Clique em **TI DeviveExplorer**, depois expandir **List** e abrir as listas, de L1 a L6.

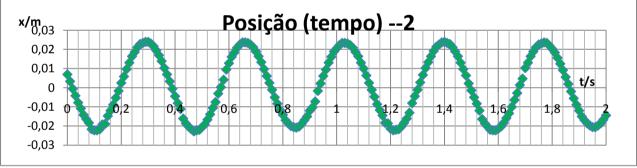



Depois copiar e colar as listas numa folha de cálculo previamente elaborada.

Nota: O Excel deve estar definido para o formato internacional de ponto (.) para a separação decimal e vírgula (,) para os milhares (no Office 2007 – usar o menu de novo, abrir, fechar... e **Opções** do **Excel**. Mudar a configuração em **Avançadas**.

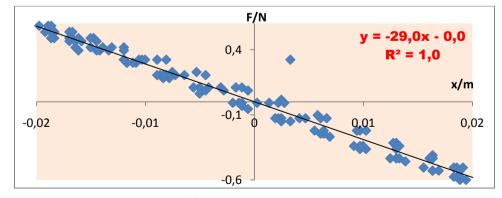
8- Analisar e discutir os gráficos.





Analisar o que significa a força sempre negativa e a posição sempre positiva. (não foram definidos os zeros para a posição inicial e força inicial).

Como resolver a situação de não se ter definido aquelas condições iniciais?


Considerandos gráficos respectivamente da variação da força e da posição em torno dos valores médios da força e da posição:

Conduzir a observação para a simetria entre o sinal da força e da posição: um negativo e outro positivo.

9- Visualizar o gráfico da força em função da posição e concluir a Lei de Hooke.

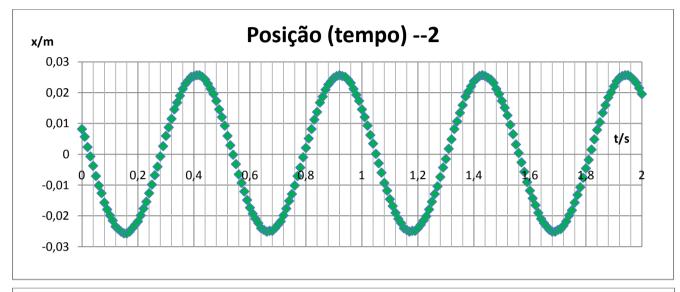
Nota: existe um ponto "esquisito". Analisar (já podia ter sido verificado no gráfico F(t)) e eliminar...

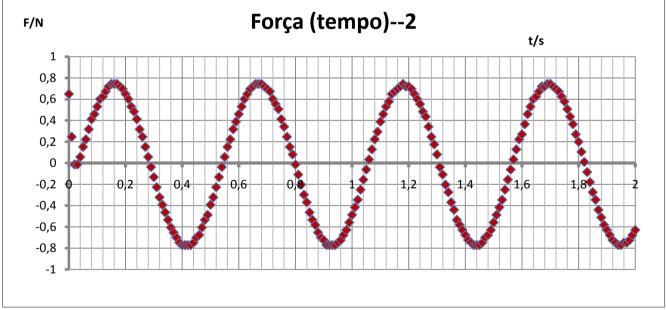
 $F = -29.0 \text{ x} \rightarrow F = -k \text{ x}$ (simetria no sinal, já antes analisado nos gráficos)

10-Medição do período e cálculo de frequência angular.

$$T= (1,68-0,20)/4 = 0,37 \text{ s e } \omega = 17,0 \text{ rad/s}$$

11- Partindo da Lei de Hooke, deduzir a expressão para a frequência angular.

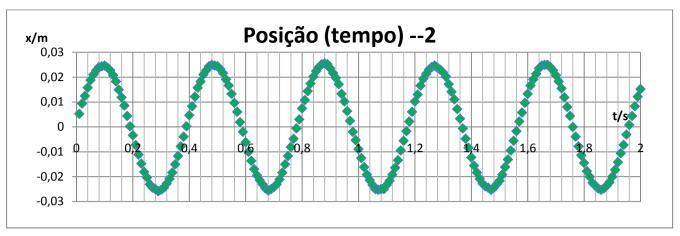

$$m\frac{d^2x}{dt^2} = -k \ x \Rightarrow \frac{d^2x}{dt^2} = -\omega^2 x = -k \ x \Rightarrow \omega = \sqrt{\frac{k}{m}}$$

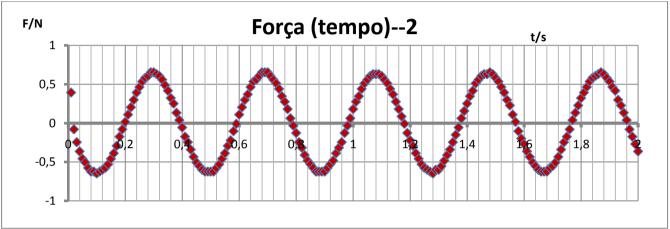

12- Analisar a influência da massa, mudando a massa em oscilação.

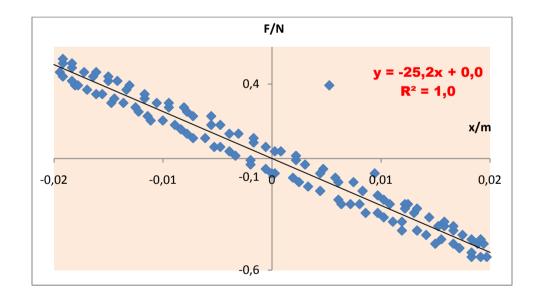
$$m = 200 \text{ g}$$

Usando a expressão encontrada, prever o período de oscilação.

T = 0.52 s

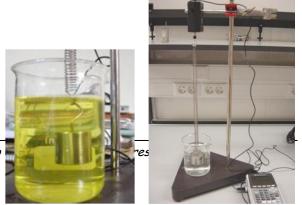





Medir o período $T = (1,56-0,02)/3 = 0,51 \text{ s e } \omega = 12,2 \text{ rad/s}$

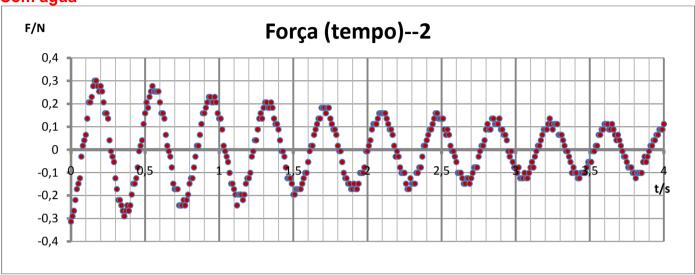
Comentar a concordância do previsto com o medido.

13- Analisar influência da constante elástica, mudando a mola e mantendo a massa, m = 100 g.



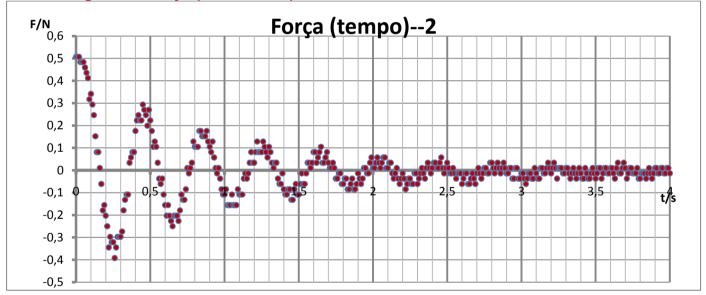
 $k = 25,2 \text{ N m}^{-1}$ $T = (1,96)/5 = 0,39 \text{ s e } \omega = 16,1 \text{ rad/s}$

Verificar da concordância entre a expressão teórica e o obtido experimentalmente.



14- Estudo do amortecimento.

$$m = 100 \text{ g}$$


Introduzir a massa em água (também se pode utilizar um detergente ou um óleo). Obviamente, usar apenas o sensor de força. Para iniciar o movimento, segurar a massa no fundo do recipiente e depois largá-lo).

Com água

T= (3,6-0,2) /9 = 0,38 s e ω =16,5 rad/s

Com detergente da loiça (um amarelo).

 $T= (2.25-0.25) / 5 = 0.40 s e \omega = 15.7 rad/s$

Como é de esperar, verifica-se um aumento ligeiro nos períodos do oscilador não amortecido (0,37 s) para os dos osciladores amortecidos (0,38 s em água e 0,40 s em detergente – maior amortecimento).

O que muda na oscilação em relação à situação da oscilação no ar?

Muda o meio onde ocorre oscilação e para o oscilador muda a sua amplitude de oscilação, que vai diminuindo com o tempo e o período de oscilação também aumenta.

A ressonância é a tendência de um oscilador para oscilar em máxima amplitude com frequência

igual à sua frequência própria.

O filme da ponte de Tacoma e da sua queda (procura no Google de **tacoma bridge**) é interessante para motivar para este fenómeno.

Outras relações do fenómeno com o electromagnetismo (sintonização de sinais ou ressonância magnética para imagiologia) podem ser estabelecidas.

Material:

- . gerador de sinais
- . bobina (usei com 1000 espiras)
- . um pequeno íman para fixar na parte inferior da massa oscilante.


Fixando um pequeno íman na massa oscilante e com ela próximo da bobina, ou mesmo parcialmente no seu interior, fazer variar a frequência do sinal.

Para frequências próximas das determinadas para o oscilador verifica-se que amplitude de oscilação aumenta. Para as outras frequências não há oscilação.

$$m = 100 \text{ g}$$

Com o oscilador inicialmente parado procura-se a frequência de ressonância.

Depois desliga-se o gerador de sinais e pára-se também o oscilador. Inicia-se, então, a aquisição de dados e liga-se o gerador de sinais. O gráfico seguinte mostra o que foi registado.

O período é 0,38 s, a que corresponde uma frequência de 2,6 Hz (frequência própria de oscilação).

Bibliografia

http://arsphysica.wordpress.com/2009/03/02/como-medir-a-massa-de-um-astronauta

http://www.leifiphysik.de/web_ph10_g8/musteraufgaben/13schwingungen/bmmd/bmmd.htm

http://gallery.spaceref.com/us-spaceflight/STS040/10064307.html

http://www.youtube.com/watch?v=dvRHK4yA8rc

http://www.youtube.com/watch?v=jT-E5v7gLL8

Alonso & Finn, Físíca, Volume I Mecânica