## ACTIVIDADE LABORATORIAL - BIOLOGIA 12º Ano



# Estudo de uma Enzima

# O que se pretende

- 1 Elaborar um protocolo experimental adequado ao assunto em estudo estudo de uma enzima.
- 2 Seleccionar material adequado ao estudo de uma enzima.
- 3 **Descrever o procedimento** necessário ao estudo de uma enzima.
- 4 Observar a acção de uma enzima sobre um substrato.
- 5 **Verificar a influência de vários tipos de factores** sobre a sua actividade enzimática.

# Verificar significados...

6 Escrever **breves descrições** dos seguintes termos:

| Termo                     | Breve descrição                                                                                                                   |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| Catalisador               | Substância que facilita a interacção entre os reagentes de uma reacção química.                                                   |  |
| Biocatalisador            | Catalisador biológico, também designado por enzima, que diminui a energia de activação da reacção química.                        |  |
| Enzima                    | Catalisadores biológicos, proteínas que actuam, fazendo diminuir a energia de activação necessária, aumentando a taxa da reacção. |  |
| Centro activo             | Local de uma enzima onde se ligam os substratos de uma reacção química.                                                           |  |
| Substrato                 | Reagente de uma reacção química catalisada por uma enzima.                                                                        |  |
| Complexo enzima-substrato | Conjunto formado entre a enzima e o(s) substrato(s), mantido temporariamente por ligações químicas fracas.                        |  |
| Especificidade absoluta   | Quando as enzimas que só catalisam um único tipo de reacção se ligam apenas a um único substrato.                                 |  |

| Termo                      | Breve descrição                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------|
| Especificidade<br>relativa | Quando as enzimas se conseguem ligar a grupos de substratos quimicamente semelhantes.           |
| Cofactor                   | Molécula não-proteica que se liga a uma enzima, activando-a.                                    |
| Coenzima                   | Cofactor de natureza orgânica necessário para funcionamento de uma enzima.                      |
| Apoenzima                  | Enzima não ligada ao cofactor e, como tal, não funcional.                                       |
| Holoenzima                 | Enzima activa ligada ao cofactor.                                                               |
| Via metabólica             | Conjunto de reacções químicas de uma célula que funcionam em cadeia.                            |
| Inibidor                   | Molécula que se liga a uma enzima e a impede de funcionar.                                      |
| Inibição competitiva       | Quando o inibidor se liga ao centro activo da enzima, competindo com o substrato.               |
| Inibição alostérica        | Quando o inibidor não se liga ao centro activo da enzima mas a outro local (centro alostérico). |

## Procedimento

- 7 Elaborar um **protocolo experimental** que contribua para o estudo laboratorial das enzimas.
- 7.1 Após uma pesquisa bibliográfica, **seleccione uma determinada enzima** e **um factor** da mesma que queira estudar.
- 7.2 O protocolo experimental será para executar futuramente, pelo que deve ter em conta se o material que necessita existe na escola ou é de fácil aquisição.

- 7.3 Na construção do protocolo experimental, tenha em atenção:
- a selecção de uma determinada enzima, para a qual, teoricamente, deve conhecer as condições óptimas de actuação;
- a utilização do substrato;
- a utilização de um dispositivo de controlo;
- a manipulação de variáveis;
- um processo para evidenciar os resultados obtidos.

#### 7.4.

- 7.4.1. No seu protocolo experimental, siga a seguinte estrutura:
- I Objectivo da actividade prática.
- II Listagem de procedimentos a efectuar.
- III Lista de material necessário para a execução da actividade prática.
- IV Sugestão de registo de resultados.
- V Sugestão de tópicos de discussão.
- 7.4.2. Execute o seu protocolo experimental.

## 7.4.

# **Protocolo Experimental**

# Estudo de uma Enzima: A POLIFENOLOXIDASE

## **I Objectivos**

- . Observação da acção da enzima polifenoloxidase sobre o catecol;
- . Análise da sua actividade por influência do pH.

## Introdução

A enzima **polifenoloxidase** está presente quer nas células das plantas quer nas células dos animais. A batata, possui a enzima **polifenoloxidase**, responsável pelo escurecimento de frutos e vegetais depois de cortado e expostos ao ar. A esse processo dá-se o nome de *escurecimento enzimático*.

O mecanismo através do qual essa enzima actua baseia-se na oxidação de compostos difenólicos (que possuem dois radicais hidroxilo, -OH, ligado ao anel benzénico) e monofenólicos (que possuem um único radical hidroxilo, -OH, ligado ao anel benzénico) presentes nas frutas e nos vegetais. A acção mais comum é sobre os difenóis, de entre os quais destaca-se o **catecol**, cuja oxidação está representada na figura abaixo:

O escurecimento de frutos e vegetais é devido à formação de quinonas e à reacção que estas sofrem posteriormente.

A enzima **polifenoloxidase** das plantas e dos animais, contém cobre que pode ser complexado com vários quelantes, tornando a enzima inactiva. Alguns inibidores da enzima são a feniltioureia, o cianeto ou a cisteína.

Neste trabalho vamos observar a acção da enzima sobre o catecol (um difenol) e verificar um factor que influencia a sua actividade, o pH.

#### **II Procedimento**

#### A - Preparação do Extracto Enzimático

- 1 Coloque num homogeneizador uma batata média descascada e cortada em bocados.
- 2 Junte 50 ml da solução de fluoreto de sódio ( que deverá estar no frio).
- 3 Homogenize durante 1 a 2 minutos.
- 4 Filtre num funil de Buchner. O filtrado obtido é o extracto enzimático.
- 5 Guarde o extracto enzimático num erlenmeyer coberto com papel de alumínio e coloque-o num banho de gelo, onde deve ser mantido durante toda a sessão.

# **B** – Acção da Polifenoloxidase

1 Prepare 3 tubos de ensaio como se indica a seguir:

Tubo B1 – 15 gotas de extracto + 15 gotas de solução de catecol.

Tubo B2 – 15 gotas de extracto + 15 gotas de solução de água.

Tubo B3 – 15 gotas de água + 15 gotas de solução de catecol.

2 Agite os tubos e coloque-os no termóstato a 37 °C durante 10 minutos, agitando de vez em quando. Registe o que observa após a incubação.

### C - Natureza Química da Polifenoloxidase

1 Prepare 3 tubos de ensaio como se indica a seguir:

Tubo C1 – 15 gotas de extracto + 15 gotas de solução de catecol. Agite. Coloque 10 minutos no termóstato (tubo de controle).

Tubo C2 – 15 gotas de extracto + 15 gotas de TCA ( solução de ácido tricloroacético a 10%). Agite. Espere 5 minutos. Junte 15 gotas de solução de catecol e incube 10 minutos a 37°C. Compare com C1.

Tubo C3 – 15 gotas de extracto + alguns cristais de feniltioureia.

2 Agite durante 5 minutos. Junte 15 gotas de solução de catecol e incube 10 minutos a 37°C. Compare com C1.

### D - Especificidade para o Substrato

1 Prepare 3 tubos de ensaio como se indica a seguir:

Tubo D1 – 15 gotas de extracto + 15 gotas de solução de catecol.

Tubo D2 – 15 gotas de extracto + 15 gotas de fenol.

Tubo D3 – 15 gotas de extracto + 15 gotas de hidroquinona.

2 Agite os tubos e incube 10 minutos a 37°C. Observe e registe as alterações que sofrem os respectivos conteúdos.

## E - Efeito do pH

1 Prepare 4 tubos de ensaio como se indica a seguir:

Tubo E1 – 2ml de solução de HCl.

Tubo E2 – 2ml de tampão acetato.

Tubo E3 – 2 ml de tampão de fosfatos.

Tubo E4 - 2ml de tampão Tris.

- 2 Junte 15 gotas de solução de catecol e 15 gotas de extracto a cada tubo.
- 3 Agite os tubos e incube-os 10 minutos a 37°C. Observe cada tubo e registe as alterações.

## III Lista de material:

| Descrição                                | Quantidade |
|------------------------------------------|------------|
| Homogeneizador                           | 1          |
| Gelo                                     | q.b.       |
| Batatas                                  | q.b.       |
| Pipetas graduadas                        | 6          |
| Conta gotas                              | 6          |
| Funil de Buchner                         | 1          |
| Faca                                     | 1          |
| Erlenmeyer                               | 1          |
| Papel de alumínio                        | q.b.       |
| Papel de filtro                          | q.b.       |
| Termóstato                               | 1          |
| Pipetador                                | 6          |
| cronómetro                               | 1          |
| Tubos de ensaio                          | 13         |
| Suporte de tubos de ensaio               | 4          |
| Água                                     | q.b.       |
| Solução de fluoreto de sódio 0,1 mol L-1 | 100 ml     |
| Solução de ácido tricloroacético a 10%   | 100 ml     |

Página 6 de 8

| Descrição                            | Quantidade |
|--------------------------------------|------------|
| Solução de HCl 0,1 mol L-1           | 250 ml     |
| Tampão acetato 0,1 mol L-1 (pH5)     | 5 ml       |
| Tampão de fosfatos 0,1 mol L-1 (pH7) | 5 ml       |
| Tampão Tris 0,1 mol L-1 (pH9)        | 5 ml       |
| Feniltioureia                        | q.b.       |
| Fenol                                | 100 ml     |
| Hidroquinina                         | 100 ml     |
| Solução de catecol 0,1 mol L-1       | 250 ml     |

## IV Registo de resultados

#### **Tratamento dos resultados**

. Interprete e discuta os resultados obtidos relativamente a cada um dos efeitos estudados.

## **B** – Acção da Polifenoloxidase

| TUBO                      | OBSERVAÇÕES                                         |                                                  |          |
|---------------------------|-----------------------------------------------------|--------------------------------------------------|----------|
|                           | Início                                              | Após 10 min a 37°C                               |          |
| <b>B1</b> (tubo controle) | Solução<br>acastanhada                              | Solução castanho rosado                          |          |
| B2                        | Solução opaca,<br>praticamente<br>incolor           | Solução opaca, praticamente incolor              | B1<br>B2 |
| В3                        | Solução<br>transparente,<br>praticamente<br>incolor | Solução<br>transparente,<br>praticamente incolor |          |

#### **Tratamento dos Resultados B**

Após termos colocado os tubos a 37°C apenas o tubo B1 revelou alteração de cor. A enzima oxidou os grupos OH do catecol, sendo esta reacção mais rápida à temperatura de 37°C.

Nos outros tubos não ocorreu reacção pois não estavam presentes em simultâneo, o extracto e o substrato e logo não se formou o complexo enzimático.

### C – Natureza Química da Polifenoloxidase

| TUBO                     | OBSERVAÇÕES                   |          |
|--------------------------|-------------------------------|----------|
| C1<br>(tubo<br>controle) | Solução opaca de cor castanha | C1 C2 C3 |
| C2                       | Solução opaca creme           |          |
| С3                       | Solução opaca creme           |          |

## **Tratamento dos Resultados C**

O tubo C1 serviu de controle, no tubo C2 não ocorreu reacção pois o ácido desnatura as enzimas, provocando a destruição da sua estrutura tridimensional. No tubo C3, também não ocorre reacção porque a feniltioureia funciona como inibidor não permitindo a oxidação do substrato.

### D - Especificidade para o Substrato

| TUBO      | OBSERVAÇÕES                          |                                                                   |
|-----------|--------------------------------------|-------------------------------------------------------------------|
|           | Início                               | Após 10 min a 37°C                                                |
| <b>D1</b> | Solução opaca de cor castanha escura | Solução opaca de cor castanho muito escuro (escureceu)            |
| D2        | Solução opaca de cor castanha clara  | Solução opaca de cor castanho claro (mantém coloração)            |
| D3        | Solução opaca de cor castanha        | Solução opaca de cor castanha Um pouco mais escura que o inicial. |

#### **Tratamento dos Resultados D**

Após a adição dos três substratos verificou-se actividade enzimática, no entanto no tubo D1 a reacção foi mais extensa do que nos outros dois tubos. O aumento da temperatura provocou um aumento da actividade nos tubos D1 e D3, não se tendo verificado qualquer alteração no tubo D2.

Os diferentes substratos usados apresentam o grupo OH em quantidade e posições distintas, sendo estes factores responsáveis pelas diferenças observadas.

No fenol a existência de apenas um grupo OH determina a pouca extensão da catálise. No catecol e na hidroquinona, os dois grupos OH que possuem, estão em posições diferentes, este factor determina a diferente actividade da enzima.

### E - Efeito do pH

| TUBO           | OBSERVAÇÕES                              |                                           |
|----------------|------------------------------------------|-------------------------------------------|
|                | Início                                   | Após 10 min a 37º C                       |
| H1<br>(pH = 2) | Solução de cor creme                     | Solução de cor creme (mantém a coloração) |
| H2<br>(pH = 5) | Solução opaca de cor castanho claro      | Solução opaca de cor castanha amarelada   |
| H3<br>(pH = 7) | Solução opaca de cor castanha            | Solução opaca de cor<br>castanha rosada   |
| H4<br>(pH = 8) | Solução opaca de cor castanha esverdeada | Solução opaca de cor<br>castanha rosada   |

#### **Tratamento dos Resultados E**

Os resultados obtidos permitem concluir que o pH do meio é também, um factor que interfere na rapidez com que ocorre a formação do complexo.

Nesta catálise verifica-se que o pH ideal será por volta de 7, de acordo com os resultados obtidos. Para valores de pH muito baixos verifica-se a inactividade da enzima, devido à destruição da sua estrutura tridimensional. Para valores de pH mais elevados prevê-se uma diminuição da catálise enzimática, embora não confirmada pelos resultados, pois o aumento de iões OH<sup>-</sup> em solução irá promover uma "competição" aos centros activos da enzima o que diminuirá a possibilidade de formação do complexo.

#### V Conclusões

Nesta experiência utilizamos a enzima polifenoloxidase extraída da batata com a ajuda do fluoreto de sódio, que funcionou como quelante do cobre.

Polifenoloxidase é uma enzima que pertence ao grupo das hidroxilases. Esta enzima catalisa a remoção do hidrogénio (oxidação) do catecol passando-o para o oxigénio molecular formando água e a O-quinona correspondente, de acordo com a reacção descrita abaixo:

OH OH 
$$+\frac{1}{2}O_2$$
 Enzima  $+$  H<sub>2</sub>O

Os resultados obtidos permitiram concluir que a acção enzimática sobre o substrato depende de vários factores, neste caso específico do pH.