Queda livre

Questão problema

"Dois atletas com pesos diferentes, em queda livre, experimentam ou não a mesma aceleração?"

Objectivos

Com a realização desta actividade pretende-se:

- Reconhecer que, numa queda livre, corpos com massas diferentes experimentam a mesma aceleração;
- Determinar, a partir das medições efectuadas, o valor da aceleração da gravidade e compará-lo com o valor tabelado;

Introdução Teórica

A queda livre é o movimento de um corpo que, partindo do repouso e desprezando a resistência do ar, está sujeito, apenas à interacção gravítica.

Foi Galileu quem observou que, desprezando a resistência do ar, todos os corpos soltos num mesmo local caem com uma mesma aceleração, quaisquer que sejam as suas massas. Essa aceleração é denominada aceleração gravítica (), sendo que a única força que actua sobre o corpo é a força gravítica ().

Os corpos apenas sujeitos à força gravítica chamam-se graves e dizem-se em queda livre, independentemente do facto de estarem a cair ou a subir.

Características do vector (g):

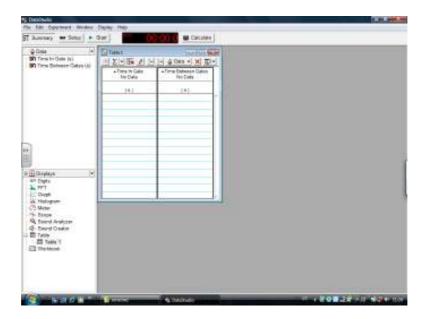
- Direcção: vertical
- Sentido: de cima para baixo
- Valor: depende da latitude, da altitude e do planeta. À superfície da Terra o seu valor médio é de 9.8 m/s².

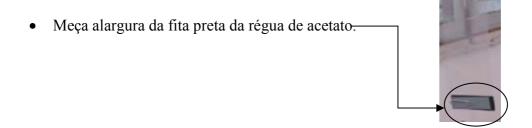
Protocolo experimental:

Procedimento

 Para responder à questão problema, utilize na sala de aula, a montagem experimental esquematizada na figura

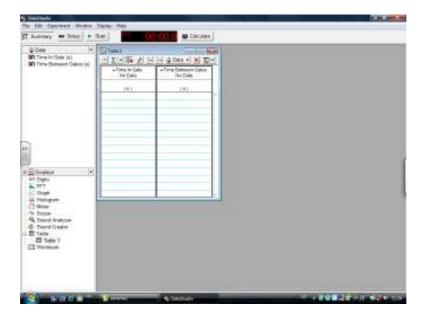
- 2 Células fotovoltáicas -Accessoey photogate Pasco Sientific ME-PS9204A
- 1Suporte universal
- 1 Mola de madeira
- 1 Folha de acetato com fita preta
- 1 Pequena chapa metálica com a mesma largura e comprimento da fita preta da folha de acetato; clip
- 3 noz
- Ligue as Células fotovoltáicas -Accessoey photogate Pasco Sientific ME-PS9204A ao
 Digital adapter Pasport PS-2159, uma á porta1 e outra á porta 2 e a seguir ligue este à interface USB LINK Pasport PS 2100A e depois ligue a uma porta USB no computador



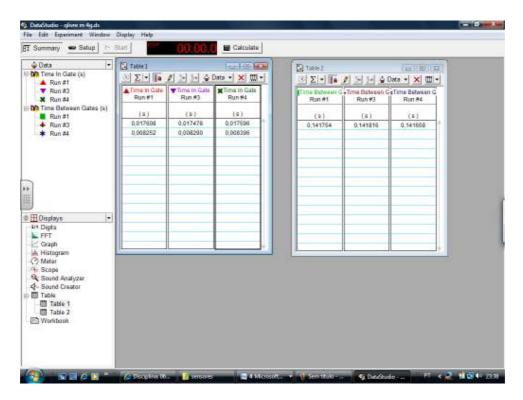

1 Digital adapter Pasport PS-2159 1 interface USB LINK Pasport PS – 2100A Computador

Física 11º Ano A.L 1.1 – Queda livre

- Abra, no ambiente de trabalho do computador a pasta "queda livre".
- Irão aparecer 2 tabelas. Na primeira tabela irá aparecer o tempo de passagem na célula 1 e o tempo na célula 2 e na segunda tabela o tempo ente células.



 Meça a massa da régua de acetato (simples e com a placa de metal presa ao acetato) e registe o valor.



Física 11º Ano A.L 1.1 – Queda livre

• Com a régua de acetato simples presa á mola de madeira, clique em "START" ao mesmo tempo que deixa cair a régua de acetato.

• Repita o ensaio pelo menos 3 vezes.

• Repita o ensaio agora com a massa presa á régua de acetato (pelo menos 3 vezes).

1 – Lista de material.

Quantidade	Materiais e equipamentos	Referência		
2	Células fotovoltáicas -Accessoey photogate Pasco Sientific	ME-PS9204A		
	com suporte			
1	Digital adapter Pasport	PS-2159		
1	USB LINC Pasport	PS-2100 A		
1	Suporte universal			
3	noz			
1	Computador com o software Data Studio instalado			
1	Mola de madeira			
1	Folha de acetato com fita preta			
1	Pequena chapa metálica com a mesma largura e comprimento			
	da fita preta da folha de acetato; clip			
1	Balança			

2– Preencha o quadro seguinte:

$$d = 2,00 \text{ cm} = 0,0200 \text{ m}$$

\underline{d} é a largura da fita preta (que interrompe o feixe de luz)

m	$\Delta t_1(s)$	$\Delta t_2(s)$	$\Delta t_3(s)$	$v_1(m/s)$	v ₂ (m/s)	$\Delta v(m/s)$	$g(m/s^2)$	<u>g</u>	$\delta_{\rm r}(\%)$
(g)								(m/s^2)	
	0,017608	0,008252	0,141754						
				1,14	2,42	1,29	9,08		
4	0,017478	0,008290	0,141816						8,67
	0,017470	0,000270	0,141010	1,14	2,41	1,27	8,94		
				1,14	2,71	1,27	0,54	8,95	
	0,017595	0,008396	0,141658					0,55	
				1,14	2,38	1,25	8,79		
	0.016110	0.000100	0.125744						
	0,016112	0,008102	0,135744	4.04	0.47	4.00	0.04		
1.0				1,24	2,47	1,23	9,04		
10	0,016416	0,008126	0,137470						
			, , , , , , ,	1,22	2,46	1,24	9,04		7.55
				<u> </u>	<u> </u>	,	,		7,55
	0,017260	0,008174	0,14180						
				1,16	2,45	1,29	9,08	9,06	

Física 11º Ano A.L 1.1 – Queda livre

A velocidade instantânea em cada célula fotoeléctrica é dada por v_1 = $d/\Delta t_1$ e v_2 = $d/\Delta t_2$ respectivamente. A variação da velocidade $\Delta v = v_2$ - v_1 .

A aceleração da gravidade é dada por $g = \Delta v / \Delta t_3$

4 – Classifique, justificando, o movimento do corpo.

Movimento rectilíneo uniformemente acelerado.

Rectilíneo, dado que descreve uma trajectória rectilínea; Uniforme, pois a = g = constante; Acelerado, pois o módulo da velocidade aumenta e os vectores velocidade e aceleração têm o mesmo sentido

5– Compare o valor da aceleração do movimento com o valor tabelado da aceleração da gravidade ($g = 9.8 \text{ m/s}^2$) e comente o resultado obtido.

Os resultados obtidos experimentalmente para o valor de g não são muito próximos do valor teórico, dando um valor médio para g de 9,0 m/s².

isto deve-se essencialmente a resistência do ar que na realidade existe e que foi desprezada; ao material de acetato que é maleável e, por vezes pode sofrer algumas oscilações e ás condições iniciais do movimento.

6 – Com base nos resultados obtidos, apresente uma resposta para a questão-problema.

A aceleração da gravidade de um corpo em queda livre, próximo da superfície da Terra, não depende da massa do corpo.

A partir dos cálculos efectuados, foi possível verificar que o resultado obtido experimentalmente para o valor de g em corpos de massas diferentes (m_1 = 4 g e m_2 = 10 g) são praticamente iguais ($g = 8.95 = 9.0 \text{ m/s}^2$ para m_1 e $g = 9.06 = 9.1 \text{ m/s}^2$ para m_2).

Neste trabalho, concluímos que o valor da aceleração da gravidade (g) é independente da massa do corpo em queda livre e para lugares próximos da superfície da Terra (onde a resistência do ar é desprezada), assim como da altura a que ele se encontra.