

Escola Secundária Dom Manuel Martins

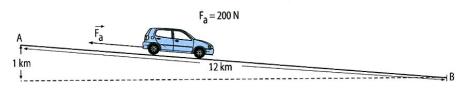
Setúbal

Prof. Carlos Cunha

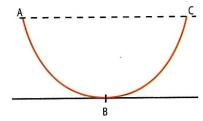
Ficha Formativa

Físico – Química

Ano Lectivo 2007/ 2008

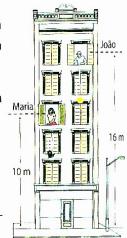

ANO I

N. º		NOME: TURMA: B
28	1.	Considera-se a Terra como um sistema termodinâmico em equilíbrio térmico.
	1.1.	Indique o que entende por sistema termodinâmico.
	1.2.	Justifique o facto da Terra estar em equilíbrio térmico.
	1.3.	Caso não se verificasse o efeito estufa e sabendo que o poder reflector da Terra é de 103 Wm ⁻² , o seu poder absorsor é de 343 Wm ⁻² e a superfície se comporta como um corpo negro, determine a temperatura a que se encontraria a superfície terrestre.
	2.	Observe o gráfico da figura que traduz a intensidades irradiada por um corpo, a temperaturas diferentes.
88	2.1.	Compare as temperaturas $T_1 e T_2$.
88	2.2.	Consultando o espectro visível da radiação electromagnética, indique a cor do corpo, para cada uma das temperaturas.
	3.	Considere os seguintes pares de materiais: Ferro / madeira Água / éter
	3.1.	Estando todos os corpos em equilíbrio térmico, tem-se a sensação de mais frio quando se toca no ferro ou no éter. Indique, justificando quais os materiais que transferem mais rapidamente a energia.
8	3.2.	Que mecanismo de transferência de calor se verifica em cada par de materiais?
3	3.3.	Complete as frases indicando o material mais adequado. A – A condução de calor ocorre mais rapidamente através do
3	3.4.	Indique a afirmação correcta. A – A madeira nunca sofre a mesma variação de energia interna que o ferro.
	×	B − A energia interna de qualquer dos materiais pode aumentar devido ao trabalho realizado por forças externas. C − A condutividade da água é maior do que a do éter.
		 D − A radiação que incide sobre um bloco de ferro não altera a sua energia interna. E − A evaporação do éter é um processo reversível.

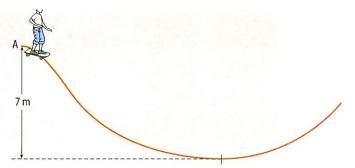

- **4.** Colocaram-se em contacto, através de uma barra de cobre com 0,20 cm² de área e 50,0 cm de comprimento, dois recipientes contendo a mesma quantidade de água que se encontravam, respectivamente à temperatura de 20,0 °C e 60,0 °C.
- 4.1. Determine a temperatura de equilíbrio térmico, se se misturarem as duas massas de água.
- 4.2. Determine a quantidade de calor que atravessa a barra, por segundo.
- 5. Uma máquina frigorífica tem uma eficiência 5.
- 5.1. Faça um esquema que traduza as transferências de energia na máquina frigorífica.
- 5.2. Determine o trabalho que a máquina realiza sobre 100 g de água retirando-lhe 4000 J de energia.
- 6. Associe as frases da coluna I às expressões da coluna II.

COLUNA I	COLUNA II
 A - Conservação de energia B - Teorema da energia cnética C - Força conservativa D - Variação de energia potencial E - Príncipio da conservação de energia mecânica 	$1 - \Delta E_{\rho} = -W\vec{p}$ $2 - W_{\vec{F}\vec{r}} = \Delta E_{c}$ $3 - \Delta E p = -\Delta E_{c}$ $4 - W_{\vec{F}} _{(A \to A)} = 0$ $5 - W_{\vec{F}NC} = \Delta E_{m}$

7. Um automóvel, de massa 1100 kg, desce a encosta de uma serra.



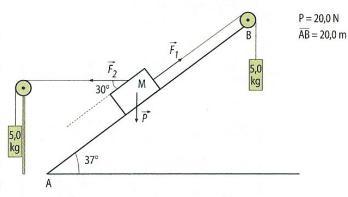
- 7.1. Classifique o sistema automóvel.
- 7.2. Indique que efeito produzem as forças exercidas pelo sistema de travagem do automóvel a nível de:
- a) energia interna.
- b) energia mecânica.
- 7.3. Para estudar a variação de energia mecânica é usual representar o sistema pelo seu cento de massa.
- a) Indique as aproximações que se fazem nesta representação.
- b) Calcule o trabalho da força de atrito existente entre as superfícies em contacto.
- c) Determine o trabalho realizado pelo peso durante a descida.
- d) Determine a intensidade da força exercida pelo sistema de travagem quando o automóvel desce com velocidade constante.
- e) Indique o valor da variação da energia potencial do automóvel na descida.
- 8. A energia cinética máxima de uma bola, P, de 0,50 kg, que desliza numa calha semi-circular, representada na figura, é 3,2 J, quando largada do ponto A.



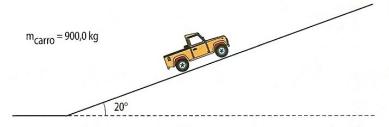
- 8.1. Considerando que não há atrito determine:
- a) o raio da calha;
- b) a velocidade da bola quando se encontra a meio do trajecto AB.
- 8.2. Complete as alíneas seguintes.
- a) A energia mecânica da esfera pode-se apresentar na forma de energia _______.
- b) Quando a esfera está no ponto A , ela só tem energia _____ e no ponto B só possui energia _____ .
- c) Durante a descida a energia _____ da esfera é transformada em energia cinética e durante a subida a energia ____ é transformada em energia
- 8.3. Indique, justificando, qual a variação de energia mecânica da esfera durante o trajecto ABC.
- 8.4. Substituiu-se a bola P, por outra bola K, de igual massa, mas sujeita a uma força de atrito .
- a) Compare a velocidade máxima da bola K com a de P.
- b) Indique, justificando, se a bola K atinge o ponto C quando largada do ponto A;
- 9. Um pára-quedista com 700 N de peso lança-se na vertical e o pára-quedas abre-se por acção da resistência do ar, cuja força \vec{F} tem 600N de intensidade.
- 9.1. Determine o trabalho realizado durante a queda de 200 m:
- a) pelo peso do pára-quedista;
- b) pela força \vec{F} .
- 9.2. Classifique o trabalho realizado por cada uma das forças.
- 9.3. De quanto deverá aumentar a intensidade da força de atrito nos últimos 20 m de queda, para que o pára-quedista não se magoe, ao tocar no solo? Justifique.
- **10.** A figura representa um prédio onde duas crianças, o João e a Maria, se encontram a brincar à janela. Em determinado momento, o João larga uma bola (500 g) e a Maria deixa cair uma boneca (700 g). Despreze a resistência do ar.
- 10.1. Indique, justificando, qual dos objectos, a bola ou a boneca, tem maior energia potencial gravítica, antes de cair.
- 10.2. Determine a variação da energia potencial gravítica da bola durante a queda.
- 10.3. Calcule a velocidade com que cada objecto atinge o solo.
- 10.4. Determine a velocidade com que a Maria deveria lançar a boneca, se pretendesse que esta atingisse o solo com a mesma velocidade da bola.

11. O Miguel desce a pista de skate, partindo do repouso no início da mesma. Ao atingir a base da pista a sua velocidade é de 10 ms⁻¹. Considere que o sistema Miguel + skate tem a massa de 60 kg.

Determine o rendimento do sistema.


12. No laboratório pretendia-se determinar a variação de energia potencial de corpos. Associe a cada procedimento descrito na coluna I a energia que pode variar, da coluna II.

COLUNA I	COLUNA II
1 – Elevou-se o plano inclinado.2 – Substituiu-se o corpo por outro de menor	A – Energia mecânica B – Energia potencial
massa.	C – Energia cinética
 3 – A superfície do plano inclinado foi substituída por outra onde existe atrito. 	D – Energia interna


13. Considere o sistema de corpos representado na figura, assim como os dados aí indicados.

O corpo M desloca-se ao longo do plano, de B para A .

- 13.1. Determine o trabalho realizado por cada uma das forças representadas, considerando-as constantes.
- 13.2. Calcule a velocidade com o corpo atinge o ponto A, considerando que as forças permanecem constantes e o corpo M parte do ponto B com velocidade de 1,0 ms⁻¹. Despreze o atrito.

14. Um carro entra num desvio de emergência com uma velocidade de valor 28 ms⁻¹ e pára após ter percorrido 100 m.

Determine a intensidade da força de atrito que actua no carro.