

Escola Secundária Dom Manuel Martins

Setúbal

Prof. Carlos Cunha

4ª Ficha de Avaliação

Físico - Química

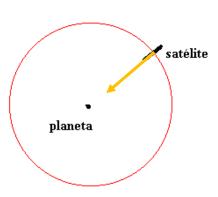
Ano Lectivo 2007/ 2008

TURMA: B

N. º	NOME:	

CLASSIFICAÇÃO

- 1. Uma das aplicações dos satélites artificiais é a de recolherem informações sobre a atmosfera terrestre. Para tal, os satélites percorrem uma distância à volta da Terra de cerca de 23000 km em 12 horas.
- 1.1.Determina a rapidez do satélite.


$$r_m = \frac{d}{\Delta t}$$

$$r_m = \frac{23000}{12} = 1916 \, km / h$$

1.2. A figura ao lado representa a **trajectória** do satélite em torno da Terra.

Marca na figura, por intermédio de um **vector**, a força que a Terra exerce sobre o satélite.

1.3.Se a força que a Terra exerce sobre o satélite deixasse de existir o que aconteceria ao satélite?

Este seguiria numa trajectória rectilínea.

Se a trajectória descrita pelo satélite tivesse um **raio maior**, a força que a Terra exerce sobre o satélite seria (escolhe a opção correcta):

A – maior, porque quanto mais longe os corpos estão do centro da Terra, maior é a força que a Terra exerce sobre eles. \Box

B - menor, porque quanto mais longe os corpos estão do centro da Terra, menor é a força que a Terra exerce sobre eles. **X**

C – igual, porque a força entre os corpos não depende da distância a que eles se encontram. \square

- 1.4.A unidade do sistema internacional de força é:
 - A) kg quilograma
 - B) cm centímetro
 - C) °C grau celsius
 - D) N Newton

1.5. Se a trajectória descrita pelo satélite apresentasse um raio maior, para que a	rapidez do
satélite fosse a mesma, o tempo gasto seria (escolhe a opção correcta):	

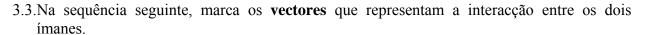
 $A - igual \square$ B - menor X

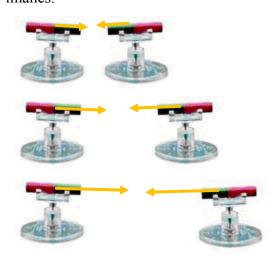
C − maior □

2. No caso da situação abaixo é bem visível o efeito que a força do Asterix teve sobre o romano.

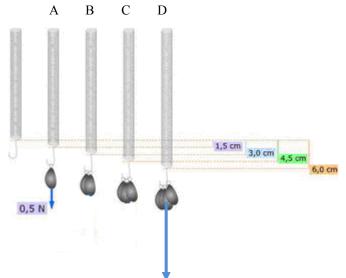
Indica outros dois efeitos que as forças podem ter sobre os corpos.

Colocar um objecto em movimento; alterar a direcção do movimento de um corpo.


- 3. Na figura ao lado estão representados dois ímanes.
- 3.1. A força que se estabelece entre eles é **atractiva** ou **repulsiva**? **Justifica**.



É uma força atractiva pois pólos opostos atraem-se.


- 3.2. A força que ocorre entre dois ímanes é:
 - A) de contacto

4. Observa a figura seguinte, onde estão suspensas **massas** sucessivamente **maiores**, na extremidade de uma mola, que quando submetida à força exercida por massas conhecidas pode servir como instrumento de medida.

4.1. Com se **designa** o instrumento de medida representado na figura?

Designa-se por Dinamómetro.

4.2. Qual deverá ser o valor marcado pelo instrumento na posição **D**? **Justifica**.

Deve marcar 4 x 0,5N = 2,0 N, porque estão penduradas 4 massas iguais à que está na posição A.

- 4.3. Tendo em atenção a escala (do vector) utilizada na figura A, marca o vector que representa a força exercida pelas massas no instrumento de medida, na figura **D**.
- 4.4. Determina o valor da **massa** suspensa, na figura A. (1 kg = 10 N).

$$m = \frac{F}{10}$$

$$m = 0,05kg$$

Questão	%	Questão	%	Questão	%
1.1.	7	1.6.	7	4.1.	7
1.2.	7	2.	7	4.2.	7
1.3.	7	3.1.	7	4.3.	8
1.4.	7	3.2.	7	4.4.	8
1.5.	7	3.3.	7		
				Total	100

