

PROVA DE EXAME FINAL DE ÂMBITO NACIONAL DE

QUÍMICA

2006

12.º Ano de Escolaridade

(Exame para alunos matriculados no 10.º ano em 2003/2004 e que se encontram abrangidos pelos planos de estudo instituídos pelo Decreto-Lei n.º 286/89, de 29 de Agosto)

CONSTANTES, FORMULÁRIO

E

TABELA PERIÓDICA DOS ELEMENTOS

CONSTANTES

Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
Constante de Planck	$h = 6,63 \times 10^{-34} \mathrm{J s}$
Constante dos gases	$R = 0,082 \text{ atm dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$ $R = 8,31 \text{ J mol}^{-1} \text{ K}^{-1}$
Velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \mathrm{m s^{-1}}$

FORMULÁRIO

Quantidade de substância m – massa M – massa molar	$ n = \frac{m}{M}$
Número de partículas n – quantidade de substância N _A – constante de Avogadro	N = n N _A
• Massa volúmica	$\rho = \frac{m}{V}$
 Concentração de solução n – quantidade de substância (soluto) V – volume de solução 	$c = \frac{n}{V}$
 Grau de ionização/dissociação n – quantidade de substância ionizada/dissociada n₀ – quantidade de substância dissolvida 	$\alpha = \frac{n}{n_0}$
• Frequência de uma radiação electromagnética c – velocidade de propagação das ondas electromagnéticas no va λ – comprimento de onda	70
 Energia de uma radiação electromagnética (por fotão)	E = h v

 Equivalência massa-energia E – energia m – massa c – velocidade de propagação da luz no vácuo 	$E = mc^2$
• Momento dipolar (módulo)	$ \vec{\mu} = \delta r$
 Absorvência de solução ε – coeficiente de absorção molar ℓ – percurso óptico da radiação na amostra de solução c – concentração de solução 	$A = \varepsilon \ell c$
 Energia transferida sob a forma de calor. c – capacidade térmica mássica m – massa Δ T – variação de temperatura 	$Q = mc \Delta T$
 Entalpia U – energia interna P – pressão V – volume 	H = U + PV
 Equação de estado dos gases ideais P – pressão V – volume n – quantidade de substância (gás) R – constante dos gases T – temperatura absoluta 	PV = nRT
 Conversão da temperatura (de grau Celsius para kelvin)	$T / K = \theta / {}^{\circ}C + 273,15$
• Relação entre o pH e a concentração hidrogeniónica de uma solução pH = -lo	$\log \left\{ [H_3O^{\dagger}] / \text{mol dm}^{-3} \right\}$

TABELA PERIÓDICA DOS ELEMENTOS

18	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,29	86 Rn [222,02			
	17	9 F 19,00	17 C <i>l</i> 35,45	35 Br 79,90	53 I 126,90	85 At [209,99]		71 Lu 174,98	103 Lr [262]
	16	8 O 16,00	16 S 32,07	34 Se 78,96	52 Te 127,60	84 Po [208,98]		70 Yb 173,04	102 No [259]
	15	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98		69 Tm 168,93	101 Md [258]
	41	6 C 12,01	14 Si 28,09	32 Ge 72,64	50 Sn 118,71	82 Pb 207,21		68 Er 167,26	100 Fm [257]
	13	5 B 10,81	13 A <i>l</i> 26,98	31 Ga 69,72	49 In 114,82	81 T¢ 204,38		67 Ho 164,93	99 Es [252]
			12	30 Zn 65,41	48 Cd 112,41	80 Hg 200,59		66 Dy 162,50	98 Cf [251]
			=	29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg [272]	65 Tb 158,92	97 Bk [247]
			10	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 DS [271]	64 Gd 157,25	96 Cm [247]
			6	27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt [268]	63 Eu 151,96	95 Am [243]
			∞	26 Fe 55,85	44 Ru 101,07	76 Os 190,23	108 Hs [277]	62 Sm 150,36	94 Pu [244]
			۲	25 Mn 54,94	43 Tc 97,91	75 Re 186,21	107 Bh [264]	61 Pm [145]	93 Np [237]
			و	24 Cr 52,00	42 Mo 95,94	74 W 183,84	106 Sg [266]	60 Nd 144,24	92 U 238,03
		Número atómico Elemento Massa atómica relativa	w	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db [262]	59 Pr 140,91	91 Pa 231,04
		Número Elen Massa ató	4	22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf [261]	58 Ce 140,12	90 Th 232,04
			m	21 Sc 44,96	39 Y 88,91	57-71 Lantanídeos	89-103 Actinídeos	57 La 138,91	89 Ac [227]
_	7	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra [226]		
-	- I ,0,	3 Li 6,94	11 Na 22,99	19 X 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr [223]		