

PROVA DE EXAME FINAL DE ÂMBITO NACIONAL DE **FÍSICA**

2006

12.º Ano de Escolaridade

(Exame para alunos matriculados no 10.º ano em 2003/2004 e que se encontram abrangidos pelos planos de estudo instituídos pelo Decreto-Lei n.º 286/89, de 29 de Agosto)

CONSTANTES

E

FORMULÁRIO

CONSTANTES

Velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \text{ m s}^{-1}$
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	g = 10 m s ⁻²
Massa da Terra	$M_{\rm T}$ = 5,98 × 10 ²⁴ kg
Constante da Gravitação Universal	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Constante de Planck	$h = 6.63 \times 10^{-34} \mathrm{J s}$
Carga elementar	e = 1,60 × 10 ⁻¹⁹ C
Massa do electrão	$m_{\rm e}$ = 9,11 × 10 ⁻³¹ kg
Massa do protão	$m_{\rm p}$ = 1,67 × 10 ⁻²⁷ kg
$K_0 = \frac{1}{4\pi\varepsilon_0}$	$K_0 = 9,00 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

FORMULÁRIO

• 2.ª Lei de Newton \vec{F} – resultante das forças que actuam num corpo de massa m \vec{a} – aceleração do centro de massa do corpo	$\vec{F} = m\vec{a}$
 Módulo da força de atrito estático μ_e – coeficiente de atrito estático N – módulo da força normal exercida sobre o corpo pela superfície em contacto 	$F_a \le \mu_e N$
Lei de Hooke F – módulo da força elástica k – constante elástica da mola x – elongação	
• Velocidade do centro de massa de um sistema de n partículas $m_{\rm i}$ – massa da partícula i $\overrightarrow{v}_{\rm i}$ – velocidade da partícula i	$\vec{V}_{CM} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2 + + m_n \vec{v}_n}{m_1 + m_2 + + m_n}$
• Momento linear total de um sistema de partículas	$\vec{P} = M \vec{V}_{CM}$
• Lei fundamental da dinâmica para um sistema de partículas \vec{F}_{ext} – resultante das forças exteriores que actuam no sistema \vec{P} – momento linear total	$\vec{F}_{\text{ext}} = \frac{d\vec{P}}{dt}$
• Lei fundamental da hidrostática	$p = p_0 + \rho g h$

•	Lei de Arquimedes	$I = \rho Vg$
	I – impulsão	
	ho – massa volúmica do fluido	
	V – volume de fluido deslocado	
		1 1
•	Equação de Bernoulli	$p_{A} + \rho g h_{A} + \frac{1}{2} \rho v_{A}^{2} = p_{B} + \rho g h_{B} + \frac{1}{2} \rho v_{B}^{2}$
	$p_{\rm A},p_{\rm B}$ – pressão em dois pontos A e B no interior de um fluido, ao longo de uma mesma linha de corrente	2
	h_A , h_B – alturas dos pontos A e B	
	$v_{\rm A},\ v_{\rm B}$ – módulos das velocidades do fluido nos pontos A e B	
	ho – massa volúmica do fluido	
		R^3
•	3.ª Lei de Kepler	$\frac{\Lambda}{\tau^2}$ = constante
	R – raio da órbita circular de um planeta	1
	T – período do movimento orbital desse planeta	
		$\rightarrow m_1 m_2$
•	Lei de Newton da Gravitação Universal	$F_{\rm g} = G \frac{m_1 m_2}{r^2} \vec{e}_r$
	$\vec{F}_{\rm g}$ – força exercida na massa pontual m_2 pela massa	I
	pontual m_1	
	r – distância entre as duas massas	
	\vec{e}_r – vector unitário que aponta da massa m_2 para a massa m_2	n_1
	G – constante da gravitação universal	
		\rightarrow 1 aa'
•	Lei de Coulomb	$\vec{F}_{e} = \frac{1}{4\pi\varepsilon_{o}} \frac{77}{r^{2}} \vec{e}_{r}$
	$\vec{F}_{\rm e}$ – força exercida na carga eléctrica pontual q' pela carga eléctrica pontual q	1,700
	r – distância entre as duas cargas colocadas no vácuo	
	\vec{e}_r – vector unitário que aponta da carga q para a carga q'	
	$arepsilon_0$ – permitividade eléctrica do vácuo	
•	Lei de Joule	$P = RI^2$
	P – potência dissipada num condutor de resistência R	
	percorrido por uma corrente eléctrica de intensidade I	
•	Diferença de potencial nos terminais de um gerador	$U = \varepsilon - rI$
	arepsilon – força electromotriz do gerador	
	r – resistência interna do gerador	
	I – intensidade da corrente eléctrica fornecida pelo gerador	
	Diference de matemaial mas terminais de um masanten	11 2 1 2 1
•	Diferença de potencial nos terminais de um receptor	0-8 +11
	ε ' – força contraelectromotriz do receptor	
	r' – resistência interna do receptor	
	I – intensidade da corrente eléctrica no receptor	
	Lei de Ohm generalizada	$\varepsilon - \varepsilon' = R.I$
	arepsilon – força electromotriz do gerador	0 0 1111
	arepsilon '– força contraelectromotriz do receptor	
	$R_{\rm t}$ – resistência total do circuito	
	Nt - resistencia total do circulto	
•	Associação de duas resistências	
	– em série	• 1
	– em paralelo	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$
	parativis	$R_{\text{eq}} R_1 R_2$
	$R_{ m eq}$ – resistência equivalente à associação das resistências $R_{ m 1}$	e R ₂

•	Energia eléctrica armazenada num condensador	$E = \frac{1}{2} CU^2$
	C – canacidade do condensador	2

capacidade do condensador

U – diferença de potencial entre as placas do condensador

• Carga de um condensador num circuito RC

R - resistência eléctrica do circuito

 ε – força electromotriz do gerador

t - tempo

C - capacidade do condensador

• Acção simultânea de campos eléctricos e magnéticos sobre cargas em movimento $\vec{F}_{em} = q\vec{E} + q\vec{v} \times \vec{B}$

$$\vec{F}_{em} = q\vec{E} + q\vec{v} \times \vec{B}$$

 $ec{F}_{
m em}$ – força electromagnética que actua numa carga eléctrica q que se desloca com velocidade \vec{v} num ponto onde existe um campo eléctrico \vec{E} e um campo magnético B

• Transformação de Galileu

$$\begin{cases} x = x' + vt \\ y = y' \\ z = z' \\ t = t' \end{cases}$$

f – frequência da radiação incidente

h – constante de Planck

W – energia mínima para arrancar um electrão do metal

E_{cin} – energia cinética máxima do electrão

• Lei do decaimento radioactivo
$$N(t) = N_0 e^{-\lambda t}$$

N(t) – número de partículas no instante t

 N_0 – número de partículas no instante t_0

 λ – constante de decaimento

• Equações do movimento com aceleração constante

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

$$\vec{v} = \vec{v_0} + \vec{a}t$$

 \overrightarrow{r} – vector posição; \overrightarrow{v} – velocidade; \overrightarrow{a} – aceleração; t – tempo