

Escola Secundária Dom Manuel Martins

Setúbal

Prof. Carlos Cunha

3ª Ficha de Avaliação FÍSICO – QUÍMICA A ANO LECTIVO 2005 / 2006 ANO I

N. °	NOME:	THEMAN
IN. T	NOME.	I UKIVIA. V

CLASSIFICAÇÃO

NOTA:

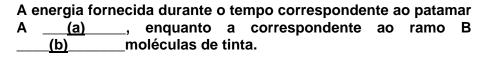
A correcção linguística também será avaliada nesta ficha. Dê respostas correctamente redigidas, completas e devidamente justificadas.

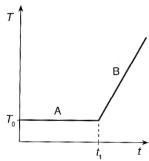
Tome particular atenção às unidades utilizadas.

Se bem se lembra, começámos na ficha anterior a tentar descobrir se o quadro da imagem era o original ou uma cópia.

Este quadro chama-se a «A Última Ceia» 1495-1498, e foi pintado por Leonardo Da Vinci.

Pode ser encontrado no refeitório do convento Santa Maria delle Grazie em Milão.


Após uma noite agitada no museu referido, suspeita-se que o quadro foi roubado e substituído por uma réplica.


As análises são feitas em microescala para não danificar o quadro. Todas as experiências apresentadas a seguir foram ampliadas para permitir segui-las.

Na ficha anterior tínhamos concluído que o quadro possuía magnésio que era utilizado no século XV como corante, embora este elemento só viesse a ser reconhecido em 1755, por Joseph Black of Edinburgh.

O passo seguinte é verificar as propriedades físicas do quadro. Um pedaço sólido de tinta é colocado num recipiente e aquecido. O gráfico que traduz a variação da temperatura da tinta em função do tempo de aquecimento é o seguinte:

 Seleccione a opção que contém os termos que devem substituir as letras (a) e (b), respectivamente:

A – é nula ... aumentou a energia potencial entre as ...

B – originou a fusão da tinta ... aumentou a energia cinética das ...

C – originou a fusão da tinta ... aumentou a energia potencial das ...

D – é nula ... aumentou a energia cinética média das ...

Esta amostra de tinta, de apenas 10 mg (não esquecer que estamos em microescala) foi aquecida durante $t_1 = 15$ min. A potência do aparelho de aquecimento é de 5 W.

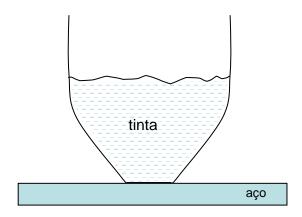
2. Qual a energia fornecida à tinta durante este p
--

3. Se foi fornecida energia à tinta e esta não aumentou de temperatura, em que foi consumida esta energia? Justifique.

A temperatura de fusão da tinta foi de 620°C.

4. Se durante 5 minutos a temperatura de 10 g de amostra subir até aos 1060°C, qual a capacidade térmica desta tinta?

De entre os materiais seguintes, um tem a capacidade térmica mássica mais próxima da tinta. È um metal que se encontrava em abundância nas tintas da época do original do quadro.


5. Recorrendo à tabela seguinte, indique qual é esse metal, justificando.

Materiais	Capacidade térmica mássica (c) a 25 °C		
iviateriais	cal g ⁻¹ °C ⁻¹	${ m J~kg^{-1}~K^{-1}}$	
Aço	0,110	460	
Alumínio	0,215	900	
Chumbo	0,0380	159	
Cobre	0,0920	385	
Estanho	0,0510	217	
Ferro	0,106	443	
Latão	0,0880	370	
Magnésio	0,243	$1,02 \times 10^3$	
Mercúrio	0,03310	138,5	
Níquel	0,106	443	
Prata	0,0566	237	
Zinco	0,0928	388	

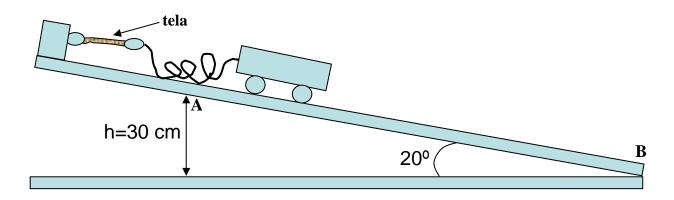
Voltemos só um bocadinho ao aparelho que aqueceu a tinta. Trata-se de uma resistência, que está em contacto com um prato de aço. Este prato é onde assenta o cadinho de metal onde está a tinta. Dentro do cadinho não há agitação e, no entanto, a temperatura de todo o conteúdo mantém-se aproximadamente homogéneo.

6. Explique os mecanismos de transferência de energia entre o prato e o cadinho, e dentro do cadinho.

Um corte no sistema podia representar-se da seguinte forma:

7. Represente com setas a forma como o calor é transferido, de acordo com o que respondeu na questão 6.

Por outro lado, reparou que este aparelho aquece muito em zonas onde o calor não é aproveitado. Medindo com um multímetro verifica que a potencia que é fornecida ao aparelho é de 12W.


8. Indique qual o valor da potencia dissipada deste aparelho e qual o seu rendimento.

9. Faça um esquema, à escala, das energias que entram e saem do aparelho, legendando o esquema.

3ª Ficha de Avaliação 3/7 CJC/2006

Só faltam os testes de resistência mecânica da tela do quadro. As telas feitas no século XV eram pouco resistentes à tracção mecânica (isto é, à tentativa de rasgar por puxão), enquanto que as telas actuais são muito mais resistentes.

O teste consiste em prender a tela numa extremidade a um suporte fixo e na outra extremidade a um suporte que está preso a um fio que está preso a um carrinho que se faz descer um plano inclinado, como se representa a seguir:

O carrinho de massa 300 g (considere que 1 kg \Leftrightarrow 10 N)ganha velocidade enquanto desce o plano inclinado, e antes de atingir o final do plano o fio estica, dando um "puxão" na tela.

10. Qual a distância que o carrinho percorre ao longo do plano inclinado desde o ponto A até ao ponto B?

Ao longo do plano inclinado são várias as forças que actuam no carrinho. Admita que a força exercida pelo fio enquanto de desenrola é nula e que o atrito entre o carrinho e o plano também é desprezável.

11. Faça um esquema das forças que actuam no carrinho, durante a descida.

12. Qual o trabalho da resultante das forças que actuam no carrinho?

Para este pedaço de tela ser do século XV, ele rasgará quando a energia da força exercida for superior a 0,50J.
13. Decida se a tela é original ou não, argumentando com o valor obtido nas questões anteriores.
E assim, com base em critérios e em testes científicos, chegou à conclusão que tudo não passou de um mal entendido e que os assaltantes, afinal não levaram o quadro que pretendiam. No entanto, foi possível determinar, por exemplo, que a exposição à poluição estava a fazer surgir na superfície da pintura uma série de produtos químicos que não faziam parte do original.
14. Com base no conjunto dos testes que fez ao longo do ano, e do seu conhecimento pessoal, redija um pequeno texto em que explique a importância da física e da química no nosso dia-a-dia, nomeadamente nos casos de investigação de acontecimentos cuja autoria se desconhece.

Admita que desse trabalho realizado sobre o carrinho, 70% é transferido para a tela, quando o fio estica.

3ª Ficha de Avaliação 5/7 CJC/2006

3ª Ficha de Avaliação 6/7 CJC/2006

CONSTANTES

Velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \mathrm{m \ s^{-1}}$	
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	g = 10 m s ⁻²	
Massa da Terra	$M_{\rm T}$ = 5,98 × 10 ²⁴ kg	
Constante da Gravitação Universal	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$	
Constante de Stefan-Boltzmann	σ = 5,67 × 10 ⁻⁸ W m ⁻² K ⁻⁴	
Produto iónico da água (a 25 °C)	$K_{\rm w} = 1,00 \times 10^{-14}$	
Volume molar de um gás (PTN)	$V_{\rm m}$ = 22,4 dm ³ mol ⁻¹	

FORMULÁRIO

n – quantidade de substância (soluto) V - volume de solução M – massa molar m – massa m – massa V - volume n – quantidade de substância N_A – constante de Avogadro V - volume do gás n - quantidade de substância do gás • Relação entre o pH e a concentração hidrogeniónica · Conversão da temperatura T - temperatura absoluta θ – temperatura

Questão 1.	Cotação 14	Questão 11.	Cotação 14
2.	14	12.	14
3.	14	13.	14
4.	14	14.	18
5.	14		
6.	14		
7.	14		
8.	14		
9.	14		
10.	14		
		TOTAL	200

